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Abstract

This technical report describes a multi-regional generalized RAS (MR-GRAS) procedure to
update/project input-output tables or social accounting matrices. The method is able to
incorporate a number of constraints on row and columns sums as well as specific flows
between economic sectors and specific taxes in an input-output table. This feature is par-
ticularly useful to reconcile information coming from different data sets. In the application
described in this report, the method is tailored towards constraints with regard to the en-
ergy system. Specifically, we specify constraints in the updating/projecting algorithm that
are able to reproduce the economic values reflected in an energy balance from an energy
system model. Here, we show that the method is able to generate input-output tables that
are forward projected until 2050 and can be used as a baseline in a computable general
equilibrium model like JRC-GEM-E3.
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1 Introduction
Input-output tables (IOTs) or social accounting matrices (SAMs) serve as the data backbone
of many economic models, in particular computable general equilibirum (CGE) models that
take into account the dependencies between different sectors. In order to be used in such
models, the data needs to be balanced. When building IOTs or SAMs from multiple data
sources, these are usually inconsistent and require methods to balance them. In particular,
this holds when IOTs or SAMs are updated to represent future years. In such way, they
could be used as a baseline in CGE models (Wojtowicz et al., 2019). In this report, we
describe a method that can be used to reconsile different data sources in the updating
process of multi-regional IOTs or SAMs. In particular, we project tables through 2050, that
can serve as input data to the JRC-GEM-E3 model.
The literature on updating, projecting, balancing and/or estimation methodologies of

IOTs and/or SAMs is very extensive by now and is still growing. In fact, in general, it is
impossible to consider all updating methods, because theoretically their number is infinite.
To clarify this claim, consider a matrix estimation technique that is based on a linear or
nonlinear programming approach with the aim of searching for the minimum “distance”
between a given (i.e. available) original matrix and a new, to be estimated, matrix subject
to certain constraints. It should not be surprising to realize that the definition of “distance”
could be, in general, considered as a rather arbitrary or subjective concept, since poten-
tially an infinite number of functions can be defined and adopted as a measure of distance
of the two matrices. Nonetheless, there are a few updating methods that are (much) more
popular among practitioners due to their certain attractive properties related to their the-
oretical and practical considerations. Consequently, such updating/balancing methods are
widely used by input-output economists, applied economic/environmental/energy/climate
modellers who seriously consider the diverse (direct and indirect, price and quantity, etc.)
mechanisms of intersectoral impacts, and by the statistical institutes around the world.
As a brief summary, the methods that were shown to be performing well in practice in-

clude the so-called RAS method (see e.g. Bacharach, 1970; Leontief, 1941; Stone, 1961),
the minimum sum of cross entropies (MSCE) approach (Golan et al., 1994; Golan and Vogel,
2000) and the matrix updating methods proposed by Harthoorn and van Dalen (1987) and
Kuroda (1988). Other alternative approaches applied in practice are the Euro method (Beu-
tel, 2002; Eurostat, 2008), the normalized squared differences method (Friedlander, 1961),
the normalized absolute differences technique (Matuszewski et al., 1964), the squared dif-
ferences approach (Almon, 1968), a univariate method of statistical correction (Tilanus,
1968), the so-called TAU and UAT methods of Snower (1990), maximum sum of cosine
similarity indices (Cardenete and Sancho, 2004), mathematical programming approaches
(see e.g. Canning and Wang, 2005; Harrigan and Buchanan, 1984) and more complex
multi-objective optimization methods (see e.g. Strømman, 2009). Extensive empirical as-
sessments of various (selected) matrix updating methods are carried out in Jackson and
Murray (2004), Huang et al. (2008) and Temurshoev et al. (2011). The last two studies
also include the improved versions of some of the above-mentioned methodologies, where
“improved” refers to the treatment of negative elements and/or preservation of signs of
the existing data points in the derived/projected tables.
The well-known RAS method – arguably the most popular updating method, at least,

among the practitioners from statistical agencies – is a biproportional technique that is
used to estimate a new matrix from an initial matrix by scaling its entries row- and column-
wise so that the pre-specified, exogenously given row and column totals of the projection
table are respected.1 However, the traditional RAS can only handle non-negative matri-
ces, which limits its application to RASing non-negative matrices only. This is, indeed, a
serious limitation in practice, in particular, when dealing with medium to large-scale IOTs,
supply and use tables (SUTs) and SAMs (or, in general, any other matrix) as these often
always include negative entries in such items (depending on the adopted table setting) as
taxes net of subsidies, net exports, changes in inventories, trade and transportation mar-
gins, and depreciation. Thus, the extension of RAS, called the generalized RAS (GRAS)
method, originally proposed by Günlük-Şenesen and Bates (1988), but re-discovered and
more rigorously formalized by Junius and Oosterhaven (2003), is now a widely used bi-
proportional technique for updating or balancing IOTs and/or SAMs with both positive and
negative elements (see also Temurshoev et al., 2013). The SUT-RAS approach, proposed
1See Lahr and de Mesnard (2004) for details of the RAS method (including its history), which also gives an

extensive set of references on the topic.
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by Temurshoev and Timmer (2011), applies the GRAS updating idea for the joint estimation
of supply and use tables for their different settings, such as the SUTs frameworks at basic
prices and purchasers’ prices, and a setting in which use tables are separated into domestic
and imported use tables.2
In practice, as we have mentioned earlier, among the practitioners, in particular, national

statistical offices, the (G)RAS approach is more popular, in our view, largely due to its
simplicity and thus easier implementation (i.e. programming) requirements. Therefore,
our choice here is a version of the GRAS method adopted to multi-regional IO setting.
However, the MSCE approach could have been additionally adopted in certain cases when
really complicated constraints needed to be imposed on the SAMs estimates that could not
be easily incorporated within the GRAS setting in a transparent form. The next section, will
briefly discusses the properties of these two updating methods in a comparative setting.
The rest of this report is organized as follows. In Section 2.1 the GRAS and MSCE

approaches to updating IOTs/SAMs are presented and some of their properties discussed.
Section 2.2 proposes the extension of the GRAS method, which we refer to as the multi-
regional GRAS (MR-GRAS) approach, that additionally allows for imposition of aggregation
constraints on the subsets of the IOT/SAM to be projected. The MR-GRAS technique is then
used in our projections of the baseline SAMs for the years of 2015 to 2050 in five year
steps. The details of these baseline projections are discussed in Section 3 and Section 4
concludes.

2The SUT-RAS method was/is used to construct the time-series of national SUTs, which are the building blocks
of the world input-output tables as estimated by the World Input-Output Database project (www.wiod.org).
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2 Methodology for projecting/updating SAMs
2.1 Generalized RAS method vs. the minimum sum of cross en-

tropies (MSCE) approach
To fully understand the nature of the two mentioned updating methods, their mathematical
formulations have to be first presented. Let x0

ij and xij be the ij-th element of the initial
(available) and adjusted/projected (unknown before the projection) SAMs, respectively.
Denote the known sum of row i’s entries by ui =

∑
j xij, which, by SAM’s construction, is

also equal to the SAM column i’s total, i.e. ui =
∑
k xki. Following Junius and Oosterhaven

(2003), first define the ratio of the unknown (or “new”) to the known (or “old”) entries of
SAM by zij ≡ xij/x

0
ij whenever x0

ij 6= 0. For x0
ij = 0, this ratio should be set to unity, i.e.

zij = 1 (Lenzen et al., 2007). Then, the GRAS problem, used for a SAM construction/updat-
ing/projection purposes, has the following form:

min
zij

f(Z) =
∑
i

∑
j

|x0
ij |zij ln

(zij
e

)
such that∑
j

x0
ijzij = ui for all i = 1, . . . , n,

∑
k

x0
kjzkj = vj for all j = 1, . . . , n,

(1)

where |x0
ij | is the absolute value of x0

ij and e is the base of natural logarithm.3 Notice that
for a SAM setting, it must always hold that vi = ui for all i. However, for the generality
purposes here we still keep explicit the distinction between the row sum ui and the column
sum vi. In fact, even within the SAM setting the necessity (or possibility) of incorporating
additional available information into the estimated SAMs may very well require the two
sums to be entirely different, which is true for the current application.
The by now well-known solution of the GRAS problem Eq. (1) can be shown to be equal

to
xij =

{
rix

0
ijsj for x0

ij ≥ 0,

r−1
i x0

ijs
−1
j for x0

ij < 0,
(2)

where ri > 0 and sj > 0 are, respectively, the row and column multipliers. In updating
input-output coefficients tables, ri and sj have clear economic interpretation: Stone (1961)
termed the economic phenomena of uniform changes along any row as substitution ef-
fects, while those of uniform changes down any column of the input coefficients matrix as
fabrication effects. That is, the former refers to the substitution of one input for another
throughout industrial processes, while fabrication effect refers to the changed proportion
of value-added vs. intermediate inputs in a sector’s total purchases.
From the GRAS optimal solution Eq. (2) it follows that “... the procedure RAS is appropri-

ate for positive elements, but needs to be replaced by (1/R)A(1/S) for negative elements"
(Günlük-Şenesen and Bates, 1988, p. 476). The complete analytical expressions of the
(unit-free) multipliers ri and sj are presented in Temurshoev et al. (2013), which are used
in an iterative algorithm in order to obtain the projected (bi-proportionally adjusted) SAM.
Thus, the existence of the closed-form solution makes GRASing a rather simple proce-
dure to implement in practice, which moreover does not require advanced optimization and
programming knowledge. Two other important (economic) structure-keeping properties
of the GRAS method, as immediately seen from Eq. (2), are its sign-preserving and zero-
preserving properties. Thus, positive (negative) elements in the benchmark SAM keep their
signs after projection procedure, while zero entries in the base-year SAM remain zeros in
the adjusted SAM. The fourth crucial property of the GRAS method is that it does not make
a difference for the final GRAS outcome whether the benchmark SAM (or IOT) is given in
terms of absolute transactions values, input coefficients, or output coefficients (see Diet-
zenbacher and Miller, 2009). This “uniqueness” property could be also considered as an
3Two notes are in place with respect to the form of the GRAS objective function. First, it is sometimes written

without the base of the natural logarithm. This omission would not cause any problem and the two formulations
would be entirely equivalent as long as the incorporated constraints fix the overall sum of the projected matrix
elements, i.e. when

∑
i,j xij is kept constant. Second, Huang et al. (2008) instead propose an “Improved GRAS"

function of f1(Z) =
∑

i,j |x0
ij | [zij ln(zij/e) + 1]. However, one can easily observe that this adjustment does not play

any role in determining the derived optimal solution, hence can be safely ignored.
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important additional advantage of the GRAS approach, which is not shared by any other
updating method.
Golan et al. (1994) use cross-entropy formulation to estimate the input coefficients of

a SAM, defined as aij ≡ xij/uj, such that the entropy distance between the estimated and
base-year input coefficients are minimized. Thus, the minimum sum of cross entropies
(MSCE) problem has the following mathematical optimization form:

min
aij

f(A) =
∑
i

∑
j

aij ln

(
aij
a0
ij

)
such that∑
j

aijuj = ui for all i = 1, . . . , n,

∑
k

aki = 1 and 0 ≤ aij ≤ 1 for all i, j = 1, . . . , n,

(3)

where the benchmark input coefficient is defined as a0
ij ≡ x0

ij/u
0
j .

From the MSCE construction, it follows that the existence of negative elements in a
SAM, which is to be updated or used for projection purposes, must be excluded. This is a
rather serious limitation of the MSCE approach since negative transactions, as mentioned
earlier, are always present in the reasonably dissaggregated real-world SAMs. An ad hoc
and simple solution to dealing with this problem is “to treat a negative expenditure as a
positive receipt or a negative receipt as a positive expenditure. That is, if xij is negative,
we simply set the entry to zero and add the value to xji. The ‘fipping’ procedure will change
row and column sums, but they will still be equal” (Robinson et al., 2001, p. 49). This
solution, however, is quite arbitrary as it might very well lead to an undesired significant
(structural) change of the entire projected/updated SAM compared to its benchmark SAM.
The solution of the MSCE problem Eq. (3) combines the information of the data and

prior in an analogy to the Bayesian principle as follows:

aij =
a0
ij exp (λiuj)∑

i

∑
j a

0
ij exp (λiuj)

.

That is, in Bayesian parlance, the posterior distribution (aij) equals to the product of the
prior distribution (a0

ij) and the likelihood function (probability of drawing the data given
parameters one is estimating), dividing by a normalization factor to convert relative prob-
abilities into absolute ones. However, since the solution depends on Lagrangian multipli-
ers (λi’s) that cannot be determined by the problem’s first-order conditions, there is no
closed-form solution. Hence, it must be found numerically and often an efficient computing
algorithm is used based on an unconstrained dual MSCE formulation (for details, see e.g.
Golan and Vogel, 2000, pp. 451-453).4
On a theoretical note, McDougall (1999) makes a detailed comparison of RAS and other

entropy-theoretic methods, including the MSCE technique, and argues that, in general,
the RAS remains the preferable matrix balancing technique. In particular, he shows that
compared to RAS, “the MSCE revises cost structures more drastically for large industries
than for small” (Proposition 4, p. 9), which implies that “the MSCE model tends to stay
closer to the initial estimates for small industries (that is, for columns with small target
totals), and to deviate from them more for large industries (large target totals)” that in
practice “would seem rarely appropriate” (p. 10). He also shows that “the RAS preserves
the ordering of input intensities across industries”, while “in general, the MSCE estimates
do not preserve the intensity ordering” (Proposition 5, p. 10). And it is also difficult to
argue against the fact that the MSCE “is less transparent than the RAS” (p. 10). All and
all, these and earlier mentioned properties of the GRAS method explain why this approach
is chosen as our final preferred choice of the SAMs updating technique in this application.
In the literature some modifications of the traditional RAS method have been proposed

that deal with the issue of accounting for additional available information on the projected
4Temurshoev (2012) applies minimum cross-entropy approach to the so-called benchmarking problem, also

related to matrix updating, where the less precise high-frequency data are to be adjusted in order to match the
more reliable low-frequency data. Morilla et al. (2005) and Cardenete and Sancho (2006) use the MSCE method
to construct SAMs for Spain.
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SAM. Consider a case when a set of transactions5 of the future SAMs are known, because,
for example, the relevant entries need to be certain percentages higher or lower than the
respective elements of the benchmark SAM or the baseline scenario’s SAMs. Within the
GRAS setting this is a rather straightforward modification.6 Let us denote by K the matrix
of known elements of the future SAM X (thus the two have the same dimension). K has
zeros in all unknown entries of X that have to be estimated. Since the known entries do
not have to be recovered, the corresponding elements in the benchmark SAM are nullified,
resulting in an adjusted base-year SAM denoted as X̃0. Next, the row totals ui and column
totals vi have to be modified as well, which might not be equal to each other if the changes
to be made are asymmetric – a more realistic picture of the available future information.
In particular, the sum of all the relevant known elements has to be subtracted from the
respective totals, i.e. the adjusted SAM’s row totals and column totals are computed from
ũi = ui −

∑
j kij and ṽi = vi −

∑
j kji, respectively. Thus, the (G)RAS algorighm can now

be implemented using the modified benchmark SAM X̃0, the adjusted row totals ũi and the
adjusted column totals ṽi, and would give the updated SAM, denoted by X̃. In the final step,
the known information have to be incorporated into this matrix, i.e. the final SAM is then
obtained as X = X̃+K. This modified GRAS procedure works because of its zero-preserving
property.
Very often the required available information may take the form of aggregates (sum) of

certain entries of SAM/IOT. An example of incorporating known information on aggregates
of submatrices of a larger matrix to be estimated can be considered the case of updat-
ing/projecting interregional IOT that necessarily has to be consistent with the available
national IOT. Such traditional RAS extensions have been already proposed and assessed
by Oosterhaven et al. (1986) and Gilchrist and St. Louis (1999, 2004). Whereas the first
paper does not allow for overlapping aggregates of cells in the target table, such possibil-
ity is allowed in the last two mentioned papers. Finally, the most flexible framework, the
so-called KRAS (K for Konfliktfreies, i.e. free of conflicts), as proposed by Lenzen et al.
(2009), generalizes the GRAS method to: (i) incorporate constraints on arbitrary subsets
of matrix elements, including non-unity coefficients restrictions where the constraint co-
efficients can be different from 1 or -1, (ii) include reliability of the initial estimate and
the external constraints, and (iii) find a compromise solution between conflicting external
information and inconsistent constraints. It is, however, not surprising that such flexibility
comes at the expense of substantial programming and computational requirements, and
thus the method becomes less transparent as any other complex numerical optimization
technique, including the MSCE model with various extra, possibly conflicting, restrictions.

2.2 Multi-regional generalized RAS
In this section, we present an extension of the GRAS technique to a multi-regional IOT/SAM
setting, which necessarily implies inclusion of additional aggregation constraints that make
the disaggregated, inter- and intra-regional data consistent with the aggregated, national
data. We refer to this extension as Multi-Regional Generalized RAS method, or simply as
MR-GRAS approach. As mentioned in the last paragraph of Section 2.1, such extensions
have been already made by Oosterhaven et al. (1986) , Gilchrist and St. Louis (1999,
2004) and Lenzen et al. (2009). However, while the first three studies focus on updating
of non-negative matrices only, the last due to its generality in many respects loses the
inherent transparency and simplicity properties of the GRAS approach. In particular, our
contributions are as follows. First, we consider updating of a multi-regional IOT/SAM which
allows for updating/projecting positive as well as negative entries. The inclusion of neg-
ative entries into a multi-regional updating framework is clearly an important addition as
there are more possibilities of having negative elements within a multi-regional IOT/SAM
setting compared to a national one due to higher economic heterogeneity of regions (resp.
countries) making up a whole economy (resp. economic area or the world). Second, we
provide the complete analytical solution of the MR-GRAS approach, and derive an easy and
5These could be also input coefficients, not absolute values of the transactions, but as discussed earlier this

distinction does not really matter within the GRAS framework.
6We do not discuss such extensions with the MSCE approach, as it is pretty clear that one will have to simply add

any desired constraint to the basic MSCE problem Eq. (3) given that the solution will anyway have to be derived
numerically. However, in order not to loose the transparency of the GRAS solution in terms of its closed-form
expressions, it is always preferable that the relevant modifications are accounted for explicitly in its solution, if
feasible.
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simple iterative algorithm for its computation. There are several advantages of having such
transparency:

— No need for implementation and possessing the advanced knowledge of the more
complex numerical optimization techniques.

— No necessity of having access to a high-performance solvers, since the iterative ap-
proach could be easily programmed/applied with such widely available software as
Excel or R.

— Easier control of the convergence process as compared to some built-in functions of
the available optimization solvers. In particular, in cases of non-convergence one could
derive the approximate solution simply by increasing only one threshold level used in
the iterative approach. Then by studying the derived tables, especially the multipliers,
one would be able to find the exact source of the non-convergence problem at lower
threshold levels. In contrast, in solvers for such cases one usually has to change many
stopping rule criteria which is often not straightforward, in particular, if the researcher
has little knowledge of the complex algorithms underlying such optimization routines.

And third, the adjustment multipliers used in MR-GRASing will have clear economic inter-
pretations that could very well be the focus of research. These multipliers make up the
MR-GRAS analytical solution and are thus directly accessible as the outputs of its itera-
tive algorithm. In contrast, such information cannot be retrieved from the applications of
numerical optimization techniques.
Using the notations as introduced in Section 2.1, the MR-GRAS problem for updating or

projecting a benchmark multi-regional IOT/SAM, denoted by a rectangular m×n matrix X0,
is given by:

min
zij

f(Z) =
∑
i

∑
j

|x0
ij |zij ln

(zij
e

)
such that∑
j

x0
ijzij = ui for all i = 1, . . . ,m,

∑
k

x0
kjzkj = vj for all j = 1, . . . , n,∑

i∈I,j∈J
x0
ijzij = wIJ for all I = 1, . . . ,m′ < m and J = 1, . . . , n′ < n.

(4)

Compared to the GRAS problem Eq. (1), in the MR-GRAS problem Eq. (4) we have
added the last I×J aggregation constraints that ensure the consistency of the updated table
entries with the exogenously given aggregated data. For simplicity of exposition, we have
not added additional super(sub)scripts explicitly distinguishing between the disaggregated
(i.e. intra- and inter-regional) variables and the aggregated (e.g. national) data.
To find the solution of Eq. (4), first, following Junius and Oosterhaven (2003), let us

decompose the original matrix as X0 = P0 −N0, where P0 contains the positive elements
of X0, and N0 contains the absolute values of the negative elements of X0. Then the
Lagrangean function of the MR-GRAS problem is

L =
∑

(i,j)∈P0

x0
ijzij ln

(zij
e

)
−

∑
(i,j)∈N0

x0
ijzij ln

(zij
e

)
+
∑
i

λi

(
ui −

∑
j

x0
ijzij

)
+
∑
j

τj

(
vj −

∑
i

x0
ijzkj

)
+
∑
(I,J)

µIJ

(
wIJ −

∑
i∈I,j∈J

x0
ijzij

)
,

where λi, τj and µIJ are the Lagrange multipliers of the three respective sets of constraints
in Eq. (4). The optimal solution of this function can be easily derived as:

xij =

{
tIJ · rix0

ijsj for x0
ij ≥ 0,

t−1
IJ · r

−1
i x0

ijs
−1
j for x0

ij < 0,
(5)

where ri ≡ eλi > 0, sj ≡ eτj > 0 and tIJ ≡ eµIJ > 0. Thus, as with the GRAS solution Eq. (2),
the row and column multipliers are given by ri and sj, respectively. However, importantly
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in contrast to the GRAS method, the MR-GRAS approach is no longer a bi-proportional
technique as the aggregation multipliers tIJ ’s make its solution aggregation-specific for
each aggregation sets of I and J. Thus, not surprisingly with tIJ = 1 for all I and all J, i.e.
without aggregation constraints, the MR-GRAS solution boils down to that of the GRAS.
The benchmark IOT/SAM decomposition into its positive and negative parts, X0 = P0 −

N0, will be useful in finding the analytical expressions of the three sets of MR-GRAS multi-
pliers. Given that its equivalent element-wise decomposition is x0

ij = p0
ij − n0

ij, the solution
Eq. (5) can be also compactly written as:

xij = tIJ · rip0
ijsj −

1

tIJ

1

ri
n0
ij

1

sj
. (6)

We do not provide here the mathematical details of the analytical expressions of the
three multipliers and the proposed MR-GRAS iterative algorithm. For all these details, the
interested reader is referred to Temursho et al. (2019).
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3 Baseline projection of SAMs up to 2050
In this section, the details of SAMs projections are presented, starting with a (brief) dis-
cussion of the exogenously given data that have to be imposed on the projected SAMs.
The described updating steps completely match the MATLAB code structure as used for
the projections purposes. The benchmark SAMs used in the projections come from the
GTAP database version 9 (Aguiar et al., 2016) as employed in the JRC-GEM-E3 model
(www.JRC-GEM-E3.net). The benchmark data include national SAMs for 27 regions, each
covering 31 industries, and the respective bi-lateral trade data by sector, all for the year
of 2011. The regional and industry classifications are given, respectively, in Table 2 and
Table 3 in the Appendix. The aim is that the MR-GRAS projection produces the SAMs that
are suitable as a baseline for JRC-GEM-E3, and that adhere to a number of exogenous
constraints.

3.1 Baseline exogenous data
The task is projecting SAMs for eight projection years of 2015, 2020, 2025, 2030, 2035,
2040, 2045, and 2050. Hence, for all these years reasonably thought paths of exogenous
variables are required that will ultimately drive the SAMs projection. The following data
are exogeneously imposed on the projected SAMs, which for convenience we call the basic
overall structure constraints. In principle, all the technical work related to these pro-
jections is carried out in MATLAB, but for further transparency purposes some of the data
are also reported in the Excel file named “Baseline”.

1. Aggregate GDP values for all 27 regions and 8 projection years. These are derived
by the Joint Research Centre (JRC) using the OECD’s GDP growth rates and the 2011
GTAP9 relevant data.

2. Aggregate private consumption figures for all 27 regions and 8 projection years
as percentages of GDP, that can for example represent an evolution of consumption
shares following rising per capita income. In what follows, Con denotes (the vector
of) private consumption values, disaggregated by sectors.

3. Aggregate government consumption figures for all 27 regions and 8 projection
years as percentages of GDP. In what follows, Gov denotes (the vector of) government
consumption values, disaggregated by sectors.

4. Sectoral investment (Inv) and capital compensation (Cap) figures for all 27 regions
and 8 projection years. These data are given exogenously primarily because they need
to be in line with the (relevant block of the) JRC-GEM-E3 model, and as such are fully
consistent with its dynamic modeling features.

5. Aggregate net exports or trade balance figures for all 27 regions and 8 projection
years as percentages of GDP. In what follows, NetExp denotes (the vector of) net
export values, disaggregated by sectors. Note that it must be the case that per region
the following identity holds: GDPr =

∑
s (Con

r
s +Govrs + Invrs +NetExprs), where r refers

to a specific region and s to sectors.

6. Total demand or, equivalently, total supply (Dem or Sup) figures by sector for all 27
regions and 8 projection years. For energy goods these figures are given exogenously
(to be discussed below), while for non-energy goods the Dem values were derived in
the following three steps. First, sectoral private consumption, government consump-
tion, and net exports were initially estimated by allocating their respective overall
country-level values for all the projection years across sectors using their respective
benchmark (2011) sectoral structures (i.e. shares by sector that sum to unity per
these categories and per region). There is no need to do such preliminary estima-
tions for investment vectors as another category of final demand, as these data are
exogenously specified. Second, sectoral exports Exp are derived as a constant pro-
portion (based on the benchmark data) of the net exports obtained in the first step.
And finally, the Dem (equivalently, Sup) figures are obtained as the solution of the
(single-country) open Leontief model corresponding to the vectors of the sum of the
four obtained final demand categories (i.e. Con, Gov, Inv, and Exp), where the 2011
input structures of all regions were used in all projections. The Leontief model allows

10

www.JRC-GEM-E3.net


estimating Dem/Sup figures that fully (i.e. directly and indirectly) satisfy the total final
demand figures estimated in the first two steps. Note that it would not make (much)
sense to use the growth rates of the sum of the obtained final demand categories by
sector in directly deriving the corresponding Dem data, since in general and also in
our case there exist sectors without final products at all (e.g. Coal in many regions),
hence one of the problems of applying final demand growth rates to Dem series. How-
ever, what needs to be considered is that the outputs of such sectors (along with those
of other sectors) are still used in the production process of the rest of sectors in the
economy. Therefore, all these missing (indirect) interrelations are fully accounted for
by using the Leontief model. As an outcome, the growth rates of Dem of the last 10
sectors (sectors 22 to 31), representing ten different technologies/inputs to electricity
production, are exactly equal to the growth rates of the relevant Electricity supply
sector (sector 06) simply because the output of these sectors is used only in the Elec-
tricity supply sector. It is important to note that the separate vectors of final demand
categories and net exports as obtained in the above-mentioned steps are not taken
as the final projections of these variables, but are used solely for the purposes of
estimating reasonable sector-specific growth rates of total demand/supply.

7. The sum of gross value added (GVA) and taxes less subsidies (TxS) by sector,
which for simplicity we denote as TotGVA_TxS . The projections of TotGVA_TxS were
obtained in two steps. First, the Dem growth rates were applied to the benchmark
TotGVA_TxS figures in order to obtain the initial TotGVA_TxS estimates. In the second
step, per region these initial TotGVA_TxS ’s by sector were adjusted (often upwards)
such that their sum matches the exogenously specified GDP values (which corresponds
to the income-side GDP measurement, and is generally not guaranteed in the first
step). However, not all sectoral figures were allowed to be adjusted because such
adjustments of small data could lead to a negative intermediate demand (i.e. the
difference Dem − TotGVA_TxS should be non-negative). After many experiments, we
ended up with an admittedly somewhat ad-hoc rule of allowing adjusting TotGV A_TxS
figures of only those sectors whose private consumption is at least 0.6% of the total
private consumption per region.

8. Sectoral shares of high- and low-skilled labor and of crude oil reserves for all
27 regions and 8 projection years, provided by JRC.

Besides the above basic overall structure constraints, also certain sector or product-
specific constraints are imposed. In particular, additionally energy products/sectors-
specific constraints are imposed, which are compactly given in an MRIO format within
the MATLAB file named “EnergyTab”. These energy sectors are Coal (sector 02), Crude oil
(sector 03), Oil (sector 04), Gas (sector 05), Electricity supply (sector 06), and sectors 22
to 31 representing different technologies of electricity production (e.g. Coal fired, Oil fired,
Nuclear, Biomass, etc.). The energy-specific constraints include:

9. Domestic supply of energy goods, which is defined as total intermediate demand plus
gross value added.

10. Trade data, both exports and imports, distinguished by origin and destination.

11. All items of taxes (i.e. VAT, subsidies, indirect taxes, and duties).

12. Imports’ transportation margins.

13. Private consumption and government consumption.

14. Individual (cell-specific) intermediate uses: crude oil uses in the oil sector (potentially
fixed), the uses of coal, oil and gas by sectors “Ferrous metals” and “Non metallic
minerals”, and the uses of different technologies (sectors 22 to 31) in electricity supply
sector.

All these individual energy sectors projections are based on energy balances derived from
the energy model POLES-JRC.
Finally, once considering the economy-environment interactions we need to account for

emissions-related constraints/data. These include:
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15. The value of CO2 tax by sector (potentially) for all 27 regions and 8 projection years.
These taxes are related to CO2 emissions from combustion of fossil fuels, and in what
follows are denoted by TaxCO2 .

16. The value of other greenhouse gasses related with the output (production activi-
ty/level) of all sectors, (potentially) for all 27 regions and 8 projection years. These
include CO2 emissions from industrial processes, CH4, N2O, HFCs, etc. In what follows
the related taxes are termed “GHG taxes” and denoted as TaxGHG.

All the emissions-related data are again fully consistent with the projections of the POLES-
JRC model.

3.2 Projection steps description
The main philosophy of our projection approach is to have the maximum possible direct
control over the updating process. This implies that the practice of full automatization of
the whole SAM/IOT projection very often could lead to inferior results, as also our own ex-
perience shows. Instead, all the existing information for the framework at hand has to be
fully utilized (which often differ from database to database), while additional objectives/as-
sumptions of the baseline or simulation projections have to be respected. An example of
the last requirement in our application is the requirement of having the identical taxes and
subsidies rates by sector for the baseline projections.
The fact that sectoral trade data between all 27 regions (except for energy sectors as

described above) have to be also estimated, the best way to proceed is using a (sort of)
multi-regional input-output framework in the process of projections of the relevant parts
of SAMs/IOTs. This is especially true because of the nature of the GTAP data in that it
does not represent the detailed sectoral trade of intermediates and final goods separately
as is always the case within a full-fledged multi-regional input-output setting.7 Given the
importance of using a multi-regional input-output (MRIO) setting in the projections, we first
present this setting relevant for the current project, which additionally provides a compact,
macro overview of the global SAM/IOT.
Table 1 illustrates the basic structure of an MRIO framework of the world economy, which

for simplicity is assumed to consist of only 3 regions and 3 sectors. It should be noted that
it is not a fully-fledged multi-regional input-output table since domestic intermediate uses
are not separated from the imported uses of intermediate goods, and the trade data do
not distinguish between trade in intermediates and in final goods. This feature of the GTAP
database is, however, sufficient for CGE modeling purposes. Given this characteristics of
the input data, the trade data have been included along the diagonal elements of the off-
diagonal block-matrices of the MRIO inter-sectoral transactions table. All the trade data are
illustrated in cyan in Table 1, which also includes the margins related to imports and exports
(positioned, respectively, in the penultimate row and penultimate column). This again
has to do with a specific way of treating international transportation margins in the GTAP
model, which allows individual countries to export international transportation services to a
“global transport sector” which subsequently satisfies demand for bilateral margins. Since
only sector 2 is assumed to be a transport sector, only sector 2 can export transportation
services. The sum of the imports margins exactly coincide with the total exports margins
at the global level, but not (necessarily) at the levels of individual regions. Along the
diagonal blocks of the MRIO table, the yellow blocks represent the total (i.e. domestic and
imported) uses of intermediates by domestic sectors along the columns. Finally, the final
demand categories (except for exports which are, by definition, part of the trade data) are
given in orange, the gross value added (GVA) section in pink, and the taxes and subsidies
(TxS) section in lime. The red margins are known exogenous data, corresponding to Dem
(= Sup) figures and the global sum of GVA, TxS and final demand components. Uncolored
parts of the table refer to empty cells.
The procedure of projecting SAMs is implemented in two steps, which are described in

what follows.
7Our expectations in this respect were confirmed during the initial stages of this project by pursing other two

“bottom-up” approaches of SAMs projections, where first the national SAMs were projected for each region in two
steps, and in the final stage the bilateral trade by sector were projected based on the obtained total export and
total imports data from the previous steps. However, such attempts were unsuccessful (i.e. the final stage ended
up to be a “RAS-infeasible” problem) basically due to having a sparse trade matrix.
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Table 1: A hypothetical 3-region and 3-sector global (multi-regional) SAM/IOT

Sector Sec1 Sec2 Sec3 Sec1 Sec2 Sec3 Sec1 Sec2 Sec3 Con Gov Inv ExMrg Dem
Sector 1 (Sec1)
Sector 2 (Sec2)
Sector 3 (Sec3)
Sector 1 (Sec1)
Sector 2 (Sec2)
Sector 3 (Sec3)
Sector 1 (Sec1)
Sector 2 (Sec2)
Sector 3 (Sec3)
Value added tax
Subsidies
Indirect taxes
Duties
Environmental taxes
Capital
Skilled labour
Unskilled labour
Reserves
Imports margins
Total supply

Note: The abbreviations Con, Gov, Inv, ExMrg and Dem denote, respectively, private consumption, government consumption, investment,
exports margins (i.e. exports of transportation services), and total demand. It is assumed that only sector 2 is a transport sector. Along the
diagonal blocks of the multi-regional intersectoral flows table, the yellow blocks represent the total (i.e. domestic and imported) uses of
intermediates by domestic sectors. The diagonal entries within the off-diagonal blocks of this matrix represent trade of both intermediate and
final goods among the regions and are given in cyan; transport margins on imported goods and exported transportation services are also colored
in cyan as these also make part of the trade data. Final demand categories (except for exports) are given in orange, GVA section in pink, and
taxes and subsidies section in lime. The red margins are known exogenous data. Uncolored (white) cells indicate empty cells.
Source: own elaboration.
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Step 1: Projection of all MRIO components, excluding those of GVA and TxS. This
step is implemented using the MR-GRAS method discussed in Section 2.2, which allows
for imposing aggregation constraints on private consumption and government consump-
tion (corresponding to, respectively, points 2 and 3 in Section 3.1), and on intermediate
demands of energy and non-energy sectors as certain intermediate demand components
are also exogenously specified. The constraints on total intermediate demands of energy
goods are derived as follows: first, total GVA of energy goods (TotGVA_energy) are obtained
as the difference between the corresponding known TotGVA_TxS figures and the relevant
energy-specific and emissions-related data on all taxes (corresponding, respectively, to
points 7 and 11, 15 and 16 in Section 3.1); and, second, by subtracting TotGVA_energy
from the domestic supply of energy products (corresponding to point 10 in Section 3.1) we
obtain the total value of intermediate demand to be imposed on energy sectors.
Thus, at this stage we impose 459 (= 27 × 17) aggregation constraints on the (above-

mentioned) two categories of final demand and 15 total intermediate demands of energy
sectors for all 27 regions, which are indicated as wIJ ’s in the MR-GRAS problem Eq. (4).
Note that since investment vectors are exogenously given (see point 4 in Section 3.1), these
are not projected within the MR-GRAS framework and are subtracted from the relevant total
demand Dem figures. Additionally, the sectoral row sum restrictions (i.e. ui’s in the MR-
GRAS problem Eq. (4)) need to account for (i.e. subtract from the last differences Dem −
Inv) the row sums of the fixed elements representing the energy-specific constraints. This
adjustment is necessary because in the projections the fixed elements are nullified within
the reference structure matrix and are added later to the main MRIO structure, following
the modified GRAS approach as fully explained in Section 1. On the other hand, the column
sums for sectors, denoted as vj ’s in Eq. (4), are given by the differences Dem−TotGVA_TxS
(see points 6 and 7 in Section 3.1) that are further adjusted by the column-sums of the
fixed data related to the energy-specific constraints. The same adjustments need to be
done with respect to all the aggregation constraints as well.
Finally, to ensure that the total transportation margins on imports and the exports trans-

portation margins at the world level match each other, we: (1) add a negative element
(equal to the sum of the benchmark-year exports margins which is, by definition, also
equal to the global sum of imports margins in the benchmark table) in the last row and
last column of the MRIO table to be projected, corresponding to the crossing-point of these
international trade-related transportation margins, (2) set their corresponding row sum to
zero, which will give the estimate of the global import transportation margins of non-energy
sectors, and (3) set the sum of the exports margin column to the total of the exogenously
given imports margins of the energy sectors (corresponding to point 12 in Section 3.1). It
is not difficult to confirm that the last constraint ensures that the global export margins are
equal to the sum of the global import margins of non-energy goods and those of energy
goods.
Once we impose all the above-mentioned constraints, the trade balance restrictions will

be automatically satisfied. That is, the net exports restrictions (point 5 in Section 3.1) are,
in fact, redundant within the MRIO setting projections. This is a sort of Walras’ Law, which
within the MRIO setting is confirmed by the expenditure-side approach to GDP measure-
ment stating that GDP equals the sum of private consumption, government consumption,
investments, and net exports. As the MR-IOT/SAM is a closed system at the global level,
the net exports are projected endogenously and must match the exogenously given figures
as long as all the relevant imposed restrictions satisfy the expenditure-side GDP constraint
and there are no exogenously imposed inconsistencies between the overall basic structure
constraints and the individual sector-specific constraints. For example, the value on to-
tal intermediate demand constraints on energy sectors adjusted for the sum of their fixed
components cannot be negative by definition, while if there are positive cells to be en-
dogenously estimated within the projection procedure along the energy sectors’ columns,
then the corresponding adjusted intermediate demand totals must be strictly positive. The
same logical requirement applies to the adjusted totals of the final demand categories. All
these checks are included in the MATLAB program as well, including the check on equality
of exogenous regional net exports with their corresponding values endogenously derived
within the MR-GRAS procedure.
With respect to the question of constraints consistency, we would like to emphasize the

following. Given that the energy-specific and emissions-related constraints come from a
completely different modeling approach (i.e. the POLES-JRC model), it is of crucial impor-
tance that their consistency with the relevant national aggregation constraints be checked.
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For example, given that the trade data of energy sectors are obtained from the POLES-JRC
energy model, one has to make sure that per region the projections of net exports of en-
ergy goods do not contradict the national net exports projections and the structure of net
exports of non-energy sectors taken together.

Step 2: Projection of the components of TxS and GVA. We first discuss an allocation
procedure related to the taxes on CO2 emissions from combustion of fossil fuels, TaxCO2.
From the emission-related data (see point 15 in Section 3.1), TaxCO2 is only given for fuel
producers, which include three sectors of Coal (sector 01), Oil (04) and Gas (05). Although
such representation is fine for the aims of the JRC-GEM-E3 model, for the purposes of
presenting the final data in the format of input-output tables it is better to allocate the
carbon taxes across all sectors using the mentioned fuels in the production process. The
uses of fuels by all sectors are available from the MR-GRAS procedure of the previous
step, whose values also include TaxCO2. For each year, each country and each fuel, we
simply allocate the corresponding total carbon tax revenues according to the shares of the
used fuel in total fuel use by all sectors. Hence, the vector TaxCO2 has now values not
only for fuel producers, but for all fuel users. These taxes are then subtracted from the
intermediate uses of all the users of the fuel in question (which thus now do not include
carbon taxes), and positioned instead as the carbon taxes component of all the taxes TxS .
It should be noted that the total demand figures for fuel-sectors should afterwards be
adjusted downward equal to the size of carbon taxes of the fuel in question (not of all fuel
sectors), since now TaxCO2 is allocated across all fuel users (and not concentrated only in
the fuel producer sectors).
The above-mentioned procedure at first sight might seem a bit ad-hoc, but it is not.

Assume that the total carbon tax on coal combustion is denoted by TaxCO2c. Further
denote the carbon emission factor of coal by emf c, the user price of coal by puc, the price
of (one tonne of) CO2 emissions by pco2, and the value of the total use of coal by sector i
as uci. Given that (within the JRC-GEM-E3/POLES-JRC models) per fuel, per region and per
year, the carbon prices, the user prices of fuel, and the emission factors are the same for
all fuel-using sectors, then for each region and each year, sector i’s carbon tax on its coal
use can be more neatly determined as follows:

TaxCO2ci = pco2 × emf c
uci
puc

(7)

However, this is exactly how the sectoral carbon taxes were derived above, since the used
allocation procedure boils down to Eq. (7):

uci∑
k uck

× TotCO2c =
uci∑
k uck

×
∑
k

(
pco2 × emf c

uck
puc

)
= TaxCO2ci.

One of the requirements of this application is to have constant sector-specific rates
of taxes and subsidies over time for the baseline projections for all non-energy sectors
(recall from the energy-specific constraints that the relevant data are already exogenous
for energy sectors). The components of TxS thus have to respect the relevant benchmark
rates, which imply the following formulas:

VAT =
VATrate

1 +VATrate
× Con = VATcoef × Con, (8)

Sub = SubRate× (IntDem+ TotGVA), (9)
InTax = InTxRate× (IntDem+ TotGVA+ Imp− Exp− ExMrg), (10)

Duty =
∑
r

Dutyr =
∑
r

[
DutyRater ×

Impr

1 + SubRater +GHGrater

]
, (11)

TaxGHG = GHGrate × (IntDem+ TotGVA), (12)

where all the overlined terms refer to the base-year constant rates, and the following ab-
breviations are used: VAT = value added tax, Con = private consumption, Sub = subsidies,
IntDem = total intermediate demand, TotGVA= total GVA (excluding TxS), Impr = total
imports from the import partner r, Imp = total imports (i.e. Imp =

∑
r Impr), InTax =

indirect taxes, Exp = total exports, ExMrg = exports of international transportation mar-
gins, Dutyr = duties on imports obtained from the import partner (region) r, and GHGrate
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is the tax rate of other GHG emissions. Notice that subsidies and GHG taxes are derived
in the same way, using the same base of domestic supply. However, the difference is that
while subsidies rates are kept constant, while the GHG tax rates are endogenously derived
(using equation 12) in order to allow direct incorporation of the GHG tax revenues TaxGHG
that are exogenously specified for all the projection years (see point in 16 in Section 3.1).
Therefore, all other rates are readily computed using the 2011 benchmark data and the
relevant formulas given in Eq. (8) – Eq. (12). Also note from Eq. (11) that the base of
duties are imports in volumes as specified in the JRC-GEM-E3 model, where the prices of
imports besides domestic prices also account for subsidies and GHG emissions taxes of the
exporting regions.
Eq. (8) implies that the value added tax (VAT) is straightforward to compute for all the

projection years, since Con is already known from the first step discussed above. However,
given that sectoral totals of GVA excluding taxes (TotGVA) are still unknown at this point,
one cannot use Eq. (9) – Eq. (12) to obtain the values of subsidies, indirect taxes and
duties. There is, however, a rather simple trick: use the input-side balance of the MRIO
setting which states that for each sector the following identity should hold:

Sup = IntDem+ Imp+ ImMrg + TotTxS + TotGVA, (13)

where ImMrg stands for imports international transportation margins, and total taxes is,
by definition, given by TotTxS = VAT + Sub+ IndTax+Duty + TaxCO2 + TaxGHG.
For the simplicity of the followup expressions, let us first introduce the following short-

cut vector notations:

SR ≡ 1 + SubRate, (14)
ITR ≡ 1 + InTxRate, (15)

SITR ≡ 1 + SubRate+ InTxRate, (16)
DIM ≡ DutyRate · IMP , (17)

F ≡ Dem−
[
SITR · IntDem+ ITR · Imp+ ImMrg +VAT

+ TaxCO2 + TaxGHG − InTxRate · (Exp+ ExMrg)
]
,

(18)

where IMP is the import (or trade) matrix consisting of Impr of all regions (thus excludes
international transportation margins) and has the MRIO setting format as described/illus-
trated in Table 1 above, DutyRate is the matrix of the same structure as IMP but includes the
benchmark rates of duties, and · denotes element-wise multiplication (Hadamard product).
Then it can be easily shown that equations Eq. (9) – Eq. (18) jointly imply the following
system of two (vector) equations:

TotGVA = ŜITR
−1

(F −Duty), (19)

Duty = DIM ′
(
ŜR + ̂TaxGHG

[ ̂IntDem+ ̂TotGVA
]−1)−1

, (20)

where x̂ refers to a diagonal matrix with the elements of vector x along its main diagonal
and zero otherwise and a prime (′) denotes matrix transposition. Notice that equation Eq.
(20) is nothing else as the definition of duties in Eq. (11) written in a compact matrix form
(using also the GHG taxes equation Eq. (12) in place of the GHG tax rates). In our MATLAB
program, equations Eq. (19) and Eq. (20) are used within a loop format until the values
of TotGVA converge for each projection year.8 Once TotGVA is obtained, the remaining
tax-related variables (i.e. subsidies, indirect taxes, duties, and GHG tax rates) are then
straightforward to compute using their definitional equations.
Thus, for all the projection years and for all non-energy goods, the taxes and subsidy

rates (except for GHG tax rates) are exactly equal to their benchmark-year counterpart
rates. If there is a need to change (some of) these rates, the respective 2011 benchmark
rates have to be exogenously adjusted. For transparency, the endogenously derived GHG
rates are presented in Table 4 in the Appendix. It can be seen from the table that these
8This is the simplest (and possibly most understandable) way of solving Eq. (19) and Eq. (20) for TotGVA;

furthermore, the convergence speed is very fast (for any positive initial/starting values of TotGVA) requiring
maximum up to 5 iterations for a very fine threshold level of 1.e-07. One, of course, can also substitute Eq.
(20) in Eq. (19) and derive the corresponding matrix quadratic equation. This could then be readily solved using
the relevant solution involving the use of eigenvectors and eigenvalues, which is arguably a somewhat more
complicated approach.
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rates are rather stable over the projection years: the average annual change of the GHG
rates (that are expressed in percentages) for the five countries/regions currently having
positive GHG taxes (i.e. CAN, MEX, AUZ, CAS and ANI) is only -0.035%. In addition, we
generally observe a negative trend in the GHG rates over time for all the regions involved,
except for ANI (Rest of Europe) region where this trend is positive.
The components of TotGVA for non-energy sectors are computed as follows. First, from

TotGVA we subtract the exogenously given capital compensation (Cap) data (see point 4 in
Section 3.1). The obtained difference, TotGVA−Cap, is then allocated across the remaining
categories of GVA (i.e. high- and low-skilled labor and oil reserves) using their exogenously
specified sectoral shares (see point 7 in Section 3.1).
The final projected SAMs/IOTs are made available in two Excel files, named Baseline

projections_ MRIOs and Baseline projections_ NIOTs. The first presents the overall results
within a global MRIO setting, similar in structure to that illustrated in Table 1, for each
projection year. The second file presents the projections per country or region within a
national input-output table (NIOT) setting. The last also includes the detailed sectoral
exports and imports data by all trade partners.

3.3 Build-in checks
Part of the projections quality checks include the following:

1. the identity of the income-side GDP and the expenditure-side GDP by region,

2. aggregation constraints on private consumption by region,

3. aggregation constraints on government consumption by region,

4. aggregation constraints on investments by region,

5. aggregation constraints on each component of taxes and subsidies per region,

6. energy products/sectors-specific constraints, and

7. emissions-related constraints.

All these restrictions will be, by construction, satisfied as long as the derivation of the
(modified) MR-GRAS solution is feasible at a low, acceptable convergence level. In this
respect, we did not encounter any problem in projecting SAMs for the eight projection
years. Moreover, additional checks on feasibility of imposing different constraints and on
the correctness of the projection outcomes are already incorporated and explained within
the MATLAB program, which are also (briefly) discussed in the previous section.
Zooming in further into the projection results requires an application of some sort of

matrix “distance" indicator that measures the closeness of one projected SAM/IOT to its
benchmark structure/table or to that of another projected SAM/IOT. We use the following
two closeness statistics, also widely used in the related literature (see e.g., Temurshoev
et al., 2011):

1. Mean absolute percentage error, defined as:

MAPE =
1

N

m∑
i=1

n∑
j=1

|xij − xbij |
|xbij |

× 100,

where xbij is the benchmark element, xij is its estimate (or its counterpart projected
element into the future), and N is the number of non-zero elements in the benchmark
table. For xbij = 0 the corresponding difference is set to zero (as zero is preserved in all
the estimates anyhow), and note that the denominator is also taken in absolute value
as this does not allow a reduction in the actual distance/error when xbij < 0. Therefore,
MAPE shows the average percentage by which each projected element is either larger
or smaller than its benchmark value, where all the relative percentage deviations are
given equal weights of 1/N .

2. Weighted absolute percentage error, defined as:

WAPE =

m∑
i=1

n∑
j=1

(
|xbij |∑

k

∑
l |xbkl|

)
|xij − xbij |
|xbij |

× 100,

17



which weights each percentage deviation of xij from xbij by the relative size of the cor-
responding benchmark element in the overall sum of the benchmark elements (again
taken in absolute values which ensures that the weights sum up to one). In other words,
compared to MAPE, the WAPE statistics gives larger weight to the larger benchmark val-
ues. Therefore, if WAPE is found to be smaller than the corresponding MAPE, then one
can assert that, on average, the projection of larger values involves smaller “errors”
than those of the small elements projection.

We start with the discussion of the closeness statistics of the exogenously given data
points, which include total demand/supply, investment, the overall sum of GVA and TxS
(TotGVA_TxS) and capital compensation data. In a sense it is clear that these data together
with the benchmark 2011 SAM/IOT structure determine the development over time and
thus the overall performance/distances of our projections. Therefore, it is important to see
how the MAPE and WAPE indicators behave for the exogenous data. These are illustrated
in Figure 1. Not surprisingly, the MAPEs and WAPEs with the benchmark from the 2011
SAM/IOT show increasing trend over time, which fully represents the imposed exogenous
(system-wide growth) assumptions. MAPEs and WAPEs with respect to the previous-period
projection data as a comparison base, on the other hand, as illustrated in the bottom
subplots of Figure 1, show rather stable distances (for MAPEs from 2020 and onward).
Notice the very large percentage deviations for MAPEs both given with respect to the 2011
benchmark data and with respect to the previous year data. This is due to the fact that
there are very small figures present in the data and their changes are individually large
percentage-wise, but in general these are relatively so small numbers that could be safely
disregarded. MAPE for investment is much lower than those of the rest simply because it has
no such small figures. Note that these are anyway exogenously given deviations and have
nothing to do with the projection procedure performance. This explanation of large MAPE
deviations is exactly taken into account in WAPEs which show far much lower deviations.
In particular, it shows that the system-wide exogenous period-to-period average increase
in the entire MRIO data, which takes into account the size of each transaction, in the range
of 10 to 15% is imposed.
We computed the closeness statics of the seven sub-parts of the projected SAMs/IOTs:

the entire MRIO table (MRIO), private consumption (Con), government consumption (Gov),
intermediate demand matrices (IntDem), taxes and subsidies (TxS), high- and low-skilled
labor and oil reserves (LabRes), and the trade matrix (Trade). In Figure 2 these obtained
MAPEs/WAPEs are presented relative to the corresponding MAPEs/WAPEs of total demand/-
supply (Dem) for the purposes of taking explicitly into account the distances/errors intro-
duced exogenously. In general, all the resulting relative MAPEs and WAPEs are satisfactory:
they are close to unity, and the deviations are close to those of total demand. In fact, from
Figure 1 we observe that the MAPEs/WAPEs of total demand are the lowest average ex-
ogenous deviations allowed, because capital compensation data show the largest average
exogenous deviations. Therefore, if we would have taken these last as the reference data
for evaluating the performance of our projections, the distance indicators would have been
lower. Additionally, it should be noted that some parts of the transactions related to energy
sectors that were kept fixed in MR-GRAS procedure also exogenously contribute to these
aggregate deviations.
We, however, observe one unacceptable deviation in MAPE comparing the 2045 to 2040

projections. The overall MRIO relative MAPE of 13 can be seen to be explained by the
relative MAPE of the trade data which equals 30.6. That is, compared to the 2045-2040
MAPE of total demand, the relevant MAPE of trade data is 30 times larger. A closer look
into the detailed deviations matrix of the corresponding trade data reveals the culprit: it
is related to the imports of Electricity supply (sector 06) from all countries by New Zeland
(NEZ). For example, the relevant import figure from the European part of Former Soviet
Union region (EUFS) was only 0.000496 mln USD in 2040, but increased to 1.5386 mln
USD by 2045 representing a dramatic increase of 310396%. Large deviations of similar
magnitudes are observed for all other imports data of New Zeland. These deviations,
however, have nothing to do with the MR-GRAS performance as the trade of energy goods
are given exogenously in the form of energy-specific constraints (see point 10 in Section 3).
In later versions of the MR-GRAS methodology, this is addressed by nulling specific trade
flows for electricity that cannot be observed in the real world. This example shows the
usefulness of MAPE indicators in revealing rather unrealistic changes in small transactions.
This is exactly the reason why we prefer to use both MAPE and WAPE indicators in assessing
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Figure 1: MAPE and WAPE of the exogenously given data

matrix deviations.

3.4 Further updates to the methodology
While projecting IOTs/SAMs to build a baseline with the methodology described above,
certain issues have arisen as is often the case in data-building practice, which led us to
update or change the relevant parts of the procedure. Two adjustments are related to the
projection of total demand (Dem) figures (hence we have updated the procedure discussed
as point 6 in Section 3.1).
The first improvement in projecting total supply or total demand (Dem) series was im-

posing a more reasonable assumption that all sectors (producing tradable goods) in each
region contribute positively to the exogeneously imposed evolution of (i.e. change in) the
aggregate net exports of the region. For example, if in region r aggregate net exports is
increasing, then we add to the existing net exports figure of each tradable sector a compo-
nent that is proportional to and consistent in sign (in the assumed case, positive) with the
imposed aggregate change in net exports as follows:

NetExprs(t) = NetExprs(t− 1) + ShareNX r
s ×

[
NetExpr(t)−NetExpr(t− 1)

]
, (21)

where NetExprs(t) is the net exports of sector s in region r in projection year t (note that
these are not final estimates of sectoral net exports, but are only used for Dem projection
purposes), NetExpr(t) is the aggregate net exports of region r in year t (this is exogenously
specified data), and ShareNX r

s is the relevant proportionality factor (or net exports "share”)
for tradable sector s in region r that is defined in terms of the benchmark-year net exports
data (expressed in absolute value) as:

ShareNX r
s =

|NetExprs(t0)|∑
s |NetExprs(t0)|

.

Next, we also use the structure of intermediate input purchases in the projection of
Dem. The output-side balance states that total demand consists of intermediate and final
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Figure 2: MAPEs/WAPEs relative to those of total demand/supply

demands:
Dem = IntDem+ Con+Gov + Inv + Exp. (22)

Since we already have projections for private consumption Con, government consumption
Gov and investments Inv, we need to have the preliminary projections of intermediate
output IntDem and exports Exp. The last is obtained using net exports estimates from Eq.
(21) as Exp = NetExp+ Imp, where total imports Imp are defined in terms of the base-year
imports coefficients, Imp = âm × Dem. Finally, the intermediate outputs are derived using
the intermediate input structure of the base year as IntDem = Aint×Dem. Thus, substituting
these last variables in Eq. (22) and solving for total demand gives:

Dem =
(
I −Aint − âm

)−1(
Con+Gov + Inv +NetExp

)
. (23)

Equation Eq. (23) has been used to derive total demand (total supply) projections using
the preliminary estimates of sector-specific Con, Gov, Inv and NetExp data.
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4 Conclusions
This paper describes a multi-regional generalized RAS methods designed to update/project
input-output tables. In particular, the method is able to update/project tables taking into
account various constraints on column and/or row sums as well as specific flows between
sectors. The method is transparent in that the algorithm of computing the updated/pro-
jected IOT/SAM can be derived in an explicit formulation. Furthermore, we are transparent
in another dimension by making available the MATLAB code in the Appendix of this report.
The underlying data structure for this particular application of the MR-GRAS methodology

is tailored towards the JRC-GEM-E3 CGE model, e.g. with respect to the sectoral and
regional aggregation of the tables and the structure of taxes and subsidies of the model.
However, with the available code and the general formulation of the method, it could be
easily adjusted towards other models or used for other purposes.
The constraints imposed on the updating/projection process are putting special emphasis

on energy use and greenhouse gas emissions. The MR-GRAS method presented here is
therefore capable of integrating detailed energy data (from different exogenous sources)
into economic structure during the updating/projecting process. This can be of relevance
to reconcile economic structure with energy statistics for a given year to derive a base year
IOT/SAM, or – as in this application – a series of IOTs/SAMs going forward in time such that
they can be readily used in a CGE model like JRC-GEM-E3. The constraint system available
with the MR-GRAS methodology can for example be used to build economic tables that are
fully consistent with exogenous energy balances.
In this report, several economic and energy constraints were assumed to be exogenous.

The methodological framework employed at the JRC formulating these constraints and
projecting IOTs/SAMs with the MR-GRAS method is referred to as PIRAMID (Platform to
Integrate, Reconcile and Align Model-based Input-output Data) (Wojtowicz et al., 2019).
The MR-GRAS methodology described in this report forms a crucial centrepiece of this
PIRAMID framework, which has already successfully been applied in generating a baseline
for model simulations with the JRC-GEM-E3 model. Further, such baseline tables generated
with PIRAMID/MR-GRAS have been published (Rey Los Santos et al., 2018). This framework
is continuously developed further to allow for better representation of energy flows and
other aspects of projecting. The latest version of baseline generation software employed
at the JRC might therefore differ from the code reproduced in the Appendix of this report.
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Annexes

Annex 1. Tables

Table 2: Regional classification

Code Country or region name

CAN Canada

USA USA

JPN Japan

RUS Russia

TUR Turkey

ARG Argentina

BRA Brazil

MEX Mexico

CHN China

IND India

KOR Republic of Korea

SAU Saudi Arabia

IRN Iran

EU28 European Union

AUZ Australia

NEZ New Zealand

INDO Indonesia

SOA South Africa

MID Rest of Middle East

SSA Sub-Sahara Africa

NOA North Africa

CSA Rest of Central and South America (incl. Caribbean and
North-Atlantic Islands)

EUFS European part of Former Soviet Union

CAS Central Asia and Caucasus

SEA South-East Asia

RAP Rest of Asia and Pacific

ANI Rest of Europe

Source: own elaboration.
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Table 3: Sectoral classification

Code Sector name

01 Agriculture

02 Coal

03 Crude Oil

04 Oil

05 Gas

06 Electricity supply

07 Ferrous metals

08 Non ferrous metals

09 Chemical Products

10 Paper products

11 Non metallic minerals

12 Electric Goods

13 Transport equipment

14 Other Equipment Goods

15 Consumer Goods Industries

16 Construction

17 Transport (Air)

18 Transport (Land)

19 Transport (Water)

20 Market Services

21 Non Market Services

22 Coal fired

23 Oil fired

24 Gas fired

25 Nuclear

26 Biomass

27 Hydro electric

28 Wind

29 PV

30 CCS coal

31 CCS Gas

Source: own elaboration.
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Table 4: The implied GHG tax rates of the baseline scenario (in %)

Region Sector 2015 2020 2025 2030 2035 2040 2045 2050 Aver.annual ∆

CAN 01 0.707 0.652 0.614 0.593 0.576 0.554 0.493 -0.036

CAN 02 0.167 0.078 0.063 0.052 0.057 0.065 0.081 -0.014

CAN 03 0.177 0.169 0.138 0.125 0.119 0.106 0.094 -0.014

CAN 05 0.396 0.253 0.181 0.127 0.099 0.079 0.064 -0.055

CAN 06 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.000

CAN 07 0.043 0.032 0.024 0.020 0.015 0.012 0.008 -0.006

CAN 08 0.013 0.009 0.008 0.007 0.006 0.004 0.002 -0.002

CAN 09 0.187 0.152 0.131 0.118 0.107 0.097 0.080 -0.018

CAN 11 0.150 0.139 0.128 0.119 0.109 0.099 0.082 -0.011

CAN 14 0.039 0.025 0.018 0.018 0.017 0.016 0.014 -0.004

CAN 20 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000

CAN 21 0.019 0.016 0.015 0.014 0.013 0.011 0.010 -0.002

MEX 01 1.490 1.313 1.195 1.067 0.962 0.866 0.786 -0.117

MEX 02 10.758 7.441 6.637 5.644 4.543 3.799 3.314 -1.241

MEX 03 1.239 1.052 0.982 0.901 0.856 0.770 0.705 -0.089

MEX 05 0.497 0.349 0.313 0.301 0.309 0.300 0.275 -0.037

MEX 07 0.062 0.057 0.050 0.040 0.030 0.024 0.017 -0.007

MEX 08 0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.000

MEX 09 0.067 0.045 0.040 0.038 0.036 0.035 0.033 -0.006

MEX 11 0.753 0.708 0.663 0.622 0.583 0.548 0.509 -0.041

MEX 14 0.042 0.019 0.017 0.017 0.017 0.017 0.017 -0.004

MEX 20 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000

MEX 21 0.130 0.116 0.102 0.090 0.080 0.070 0.061 -0.012

AUZ 01 1.992 1.770 1.625 1.525 1.426 1.345 1.243 -0.125

AUZ 02 0.892 0.475 0.419 0.384 0.344 0.323 0.299 -0.099

AUZ 03 0.019 0.015 0.014 0.013 0.013 0.011 0.010 -0.002

AUZ 05 0.373 0.441 0.382 0.280 0.248 0.196 0.156 -0.036

AUZ 06 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.000

AUZ 07 0.054 0.038 0.027 0.020 0.015 0.011 0.007 -0.008

AUZ 08 0.005 0.003 0.003 0.003 0.003 0.002 0.002 -0.001

AUZ 09 0.730 0.567 0.482 0.446 0.411 0.385 0.359 -0.062

AUZ 11 0.090 0.089 0.087 0.085 0.082 0.079 0.074 -0.003

AUZ 14 0.165 0.127 0.101 0.101 0.101 0.100 0.098 -0.011

AUZ 20 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000

AUZ 21 0.027 0.021 0.019 0.017 0.016 0.015 0.013 -0.002

CAS 01 1.202 0.895 0.712 0.581 0.492 0.425 0.380 -0.137

CAS 02 3.301 2.063 1.761 1.450 1.193 1.109 1.151 -0.358

CAS 03 0.530 0.412 0.361 0.329 0.308 0.267 0.236 -0.049

CAS 05 0.184 0.166 0.117 0.098 0.081 0.064 0.052 -0.022

CAS 06 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CAS 07 0.301 0.220 0.170 0.140 0.113 0.098 0.076 -0.037

CAS 08 0.021 0.017 0.017 0.016 0.015 0.012 0.008 -0.002

CAS 09 0.606 0.502 0.451 0.389 0.354 0.321 0.292 -0.052

CAS 11 0.563 0.500 0.440 0.388 0.344 0.307 0.274 -0.048

CAS 14 0.128 0.116 0.097 0.084 0.085 0.085 0.084 -0.007

CAS 20 0.008 0.007 0.006 0.005 0.005 0.004 0.004 -0.001

CAS 21 0.232 0.189 0.162 0.141 0.126 0.114 0.105 -0.021
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Region Sector 2015 2020 2025 2030 2035 2040 2045 2050 Average annual ∆

ANI 01 0.247 0.503 0.636 0.867 0.963 1.067 1.372 1.447 0.171

ANI 02 0.528 1.013 1.165 1.488 1.568 1.602 1.939 2.159 0.233

ANI 03 0.010 0.020 0.025 0.040 0.053 0.073 0.110 0.123 0.016

ANI 05 0.005 0.014 0.024 0.042 0.056 0.081 0.116 0.133 0.018

ANI 06 0.001 0.002 0.002 0.003 0.004 0.004 0.006 0.006 0.001

ANI 08 0.002 0.004 0.005 0.008 0.010 0.012 0.017 0.014 0.002

ANI 09 0.034 0.077 0.099 0.142 0.174 0.212 0.299 0.287 0.036

ANI 11 0.113 0.232 0.293 0.405 0.457 0.508 0.656 0.654 0.077

ANI 14 0.023 0.049 0.065 0.099 0.129 0.164 0.239 0.242 0.031

ANI 20 0.000 0.001 0.001 0.002 0.002 0.002 0.003 0.003 0.000

ANI 21 0.006 0.009 0.010 0.013 0.014 0.015 0.018 0.018 0.002

Source: own elaboration.
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Annex 2. The main MATLAB code

1 %==========================================================================
2 % JRC/SVQ /2015/J.1/0038/ NC: Model integration and baseline projection %
3 % Written by Umed Temursho , last updated: June 4, 2017 %
4 % E-mail: utemurshoev@uloyola.es // utemurshoev@gmail.com %
5 % Department of Economics , Loyola Universidad Andalucía , Seville %
6 %==========================================================================
7
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9 %% Data input and preparation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11 clear all
12 clc
13 % Input folder
14 Folder = '/Users/mr-gras/mr -gras/';
15 Input = [Folder ,'Baseline.xlsx'];
16
17 % Regions as defined in GEM -E3
18 Reg = {'CAN','USA','JPN','RUS','TUR','ARG','BRA','MEX','CHN','IND','KOR','SAU','IRN','EU28' ,...
19 'AUZ','NEZ','INDO','SOA','MID','SSA','NOA','CSA','EUFS','CAS','SEA','RAP','ANI'};
20 r = length(Reg); %number of regions
21
22 % Benchmark and projection years
23 Year = {'2011','2015','2020','2025','2030','2035','2040','2045','2050'};
24 y = length(Year); %number of projection years
25
26 % Load all the exogenous data
27 load('Data.mat');
28 BZ(isnan(BZ)==1) = 0; % Nullify NANs , if exist
29 % BZ(BZ ==0.000001) = 0; % Nullify GEM -E3 small -number trick
30
31 % Benchmark taxes and subsidies (TxS) & gross value added (GVA) by categories
32 s = 31; % Number of sectors
33 n = s*r;
34 f = 4; % Number of GVA components (capital , high - & low -skilled labor , reserves)
35 BTxS = BZ(n+1:n+5,1:n); % Benchmark TxS: VAT , subsidies , indirect taxes , duties , and enviromental

taxes
36 BGVA = BZ(n+6:n+9,1:n); % Benchmark GVA: capital , skilled labor , unskilled labor , and reserves
37 BZ(n+1:n+9,:) = []; % Delete the TxS and GVA parts from BZ
38 BZ(:,n+3) = []; % Delete the investment column from BZ
39
40 % Cell -specific high - and low -skilled labor and oil reserves shares
41 % (final LR_Shares estimates better to be included in "Data.mat")
42 LR_Shares (1:n,1:f-1,1:y) = 1;
43 LR_Shares (1:n,2:f-1,1:y) = 0;
44
45 % Exogenous cell -specific data for energy goods (to be fixed in projections)
46 MRIO_energy = zeros(n+11,n+2,y); % MRIO format of exogenously specified energy data
47 Fixed = xlsread(Input ,'FixedCells ','C4:AG34'); % Fixing cells within intra -country parts
48 Fixed(isnan(Fixed)==1) = 0;
49 %
50 %Choice of cells to fix within diagonal matrices: include 2's or not?
51 Fixed(Fixed ==2) = 0; % Do NOT fix cells indicated by 2
52 % Fixed(Fixed ==2) = 1; % DO fix cells indicated by 2
53 DiagFixed = kron(eye(r),Fixed); % Fixing cells within diagonal (intra -country) matrices
54 DiagZero = kron((ones(r,r)-eye(r)),ones(s,s)); % Zeros along diagonal -blocks , and ones otherwise
55 %
56 for yr = 1:y
57 Energy = EnergyTab (:,:,yr);
58 Energy(isnan(Energy)==1) = 0; % Nullify NANs
59 Energy = [Energy (1:n,1:n).* DiagZero + Energy (1:n,1:n).*DiagFixed , Energy (1:n,n+1:end);
60 Energy(n+1:end ,:)];
61 MRIO_energy (:,:,yr) = Energy;
62 end
63 % Total ex(im)ports and net exports of energy goods
64 Exp_energy = zeros(n,y); % Total exports of energy goods
65 Imp_ImpMrg_energy = zeros(n,y); % Total imports (inc. import margins) of energy goods
66 NetExp_energy = zeros(n,y); % Net exports of energy goods
67 for yr = 1:y
68 Exp_energy (:,yr) = sum(MRIO_energy (1:n,1:n,yr).*DiagZero ,2);
69 Imp_ImpMrg_energy (:,yr) = sum(MRIO_energy (1:n,1:n,yr).* DiagZero)'+MRIO_energy(end -1,1:n,yr)'; %Imp+

ImMrg
70 NetExp_energy (:,yr) = Exp_energy (:,yr)-Imp_ImpMrg_energy (:,yr);
71 end
72
73 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
74 %% Step 1: Projection of all MRIO components , excluding GVA and TxS %%%%%%%
75 %%%%%%%%%% The MRGRAS method is used in this step %%%%%%%%%%%%%%%%%%%%%%%%%
76 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
77
78 % Global transportation margins: a minus sign ensures the equality of total
79 % imports margins and total exports margins at the world level
80 BZ(end ,end) = -sum(BZ(:,end));
81 MRZ = zeros(size(BZ ,1),size(BZ ,2),y);
82 MRZ(:,:,1) = BZ;
83
84 % The column sums of the energy sectors along the MRIO diagonal blocks
85 % have to match the values of DomSup -GVA , where DomSup (IntDem+GVA) is
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86 % given exogenously. But given that TxS of energy products are exogenous ,
87 % we first derive their GVA as TotGVA_TxS is known and then impose the
88 % residuals on the diagonal -block column sums (purchases) of energy goods.
89 id_energy = [0; ones (5,1);zeros (15,1);ones (10,1)];
90 id_energy = kron(ones(r,1),id_energy);
91 TotGVA_energy = zeros(n,y);
92 TotIntDem = zeros(n,y);
93 for yr = 1:y
94 TotGVA_energy (:,yr) = TotGVA_TxS (:,yr).* id_energy - sum(MRIO_energy(n+1:n+5,1:n,yr)) ';
95 TotIntDem (:,yr) = MRIO_energy(end ,1:n,yr)' - TotGVA_energy (:,yr);
96 end
97 TotLabor_energy = TotGVA_energy - Cap .*( id_energy*ones(1,y));
98 % Check TotIntDem figures consistency: differences should be zero!
99 dif = TotIntDem - ((Dem -TotGVA_TxS).*( id_energy*ones(1,y))-Imp_ImpMrg_energy);
100 display('Check TotIntDem figures consistency: differences should be (close to) zero!')
101 [min(dif);max(dif)]
102
103 % Adjusting (energy) constraints: subtract the sum of the fixed elements
104 DiagSum = kron(eye(r),ones(s,s));
105 FixedTotIntDem = zeros(n,y); % Sum of the fixed IntDem per column (purchasing) sector
106 FixedTotFinDem = zeros(r,2,y); % Sum of the fixed FinDem categories per region
107 for yr = 1:y
108 FixedTotIntDem (:,yr) = sum(MRIO_energy (1:n,1:n,yr).*DiagSum ,1) ';
109 m = 1;
110 for rr = 1:r
111 FixedTotFinDem(rr ,:,yr) = sum(MRIO_energy(m:m+s-1,n+1:n+2,yr));
112 m = m+s;
113 end
114 end
115 AdjTotIntDem = TotIntDem - FixedTotIntDem .*( id_energy*ones(1,y));
116 % Check: Energy TotIntDem adjusted for fixed figures must be non -negative!
117 display('Check: Energy TotIntDem adjusted for fixed figures must be non -negative!')
118 min(AdjTotIntDem)
119 %
120 id_nonenergy = zeros(size(FixedTotIntDem));
121 id_nonenergy(FixedTotIntDem >0) = 1;
122 id_nonenergy (( id_energy*ones(1,y))==1) = 0;
123 AdjDem_nonenergy = Dem - FixedTotIntDem .* id_nonenergy;
124 % Check: Non -energy Dem adjusted for fixed figures must be non -negative!
125 display('Check: Non -energy Dem adjusted for fixed figures must be non -negative!')
126 min(AdjDem_nonenergy)
127 %
128 AdjTotFinDem = zeros(r,2,y);
129 for yr = 1:y
130 AdjTotFinDem (:,:,yr) = [Con(:,yr),Gov(:,yr)] - FixedTotFinDem (:,:,yr);
131 end
132 % Check: Energy TotFinDem excluding the fixed figures must be non -negative!
133 display('Check: Energy TotFinDem adjusted for fixed figures must be non -negative!')
134 min(AdjTotFinDem)
135
136 %%
137 AdjWorldFD = zeros(2,y);
138 for yr = 1:y
139 AdjWorldFD (:,yr) = sum(AdjTotFinDem (:,:,yr) ,1) ';
140 end
141
142 % Energy -specific aggregation constraints imposed on sectors , Con and Gov
143 [valAg ,I_J ,RAW] = xlsread(Input ,'Aggregation ','B2:AFJ30 ');
144 valAg(end ,1) = NaN;
145 valAg(end ,end) = NaN;
146 valAg (:,:,2) = valAg; % Add time dimension
147 for yr = 2:y
148 valAg(:,:,yr) = valAg (:,:,1);
149 for rr = 1:r
150 valAg(rr ,1:n,yr) = valAg(rr ,1:n,1).* AdjTotIntDem (:,yr) ';
151 end
152 valAg (1:r,n+1:n+2,yr) = AdjTotFinDem (:,:,yr);
153 end
154
155 % Exports -imports matrix
156 ExpImp = zeros(n+1,n+1,y);
157 ExpImp (:,:,1) = [BZ(1:n,1:n).*DiagZero ,BZ(1:n,end);
158 BZ(end ,1:n) ,0];
159
160 % Running the projections
161 eps = 1e-7; % Threshold (convergence) level
162 for yr = 2:y
163 u = [Dem(:,yr)-Invest(:,yr)-sum(MRIO_energy (1:n,:,yr) ,2);eps];
164 v = [Dem(:,yr)-TotGVA_TxS (:,yr)-sum(MRIO_energy (1:n,1:n,yr))'-MRIO_energy(end -1,1:n,yr)';AdjWorldFD

(:,yr);sum(MRIO_energy(end -1,1:n,yr))];
165 X0 = MRZ(:,:,yr -1);
166 MRZ_fixed = [MRIO_energy (1:n,:,yr),zeros(n,1);
167 MRIO_energy(end -1,:,yr) ,0];
168 X0(MRZ_fixed >0) = 0; % Nullify cells corresponding to fixed elements
169
170 % Now run the MRGRAS method
171 X = mrgras(X0,valAg(:,:,yr),I_J ,u,v,eps);
172 % [X,rm ,sm,tIJ] = mrgras(X0,valAg(:,:,yr),I_J ,u,v);
173
174 MRZ(:,:,yr) = X + MRZ_fixed; % Add back the fixed elements
175 % The matrix of exports and imports , including margins
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176 ExpImp(:,:,yr) = [MRZ(1:n,1:n,yr).*DiagZero ,MRZ(1:n,end ,yr);
177 MRZ(end ,1:n,yr) ,0];
178 Year{yr}
179 end
180
181 NetExp_reg = zeros(r,y); % Total net exports by region
182 Imports = zeros(n,y); % Imports by sector
183 ImpMarg = zeros(n,y); % Imports margins by sector
184 Exports = zeros(n,y); % Exports by sector
185 ExpMarg = zeros(n,y); % Exports margins by sector
186 for yr = 1:y
187 m = 1;
188 Exports(:,yr) = sum(ExpImp (1:n,1:n,yr) ,2);
189 ExpMarg(:,yr) = ExpImp (1:n,end ,yr);
190 Exp = Exports(:,yr)+ExpMarg(:,yr);
191 Imports(:,yr) = sum(ExpImp (1:n,1:n,yr))';
192 ImpMarg(:,yr) = (ExpImp(end ,1:n,yr)) ';
193 Imp = Imports(:,yr)+ImpMarg(:,yr);
194 for rr = 1:r
195 NetExp_reg(rr,yr) = sum(Exp(m:m+s-1))-sum(Imp(m:m+s-1));
196 m = m+s;
197 end
198 end
199 % Check: Recall that within the global input -output setting , we do not
200 % impose the aggregate net exports constraints; given that the system is
201 % closed , imposition of all other constraints implies automatic fulfillment
202 % of the NetExp constaints [it is a sort of Walras ' law!]. Hence , it is a
203 % good idea also to check that the endogenously derived from MRGRASing
204 % aggregate NetExp_reg are consistent with their exogenous counterparts!
205 display('Endogenous aggregate NetExp_reg should be consistent with their exogenous counterparts!')
206 display('The differences of the two should be (close to) zero!')
207 min(NetExp_reg -NetExp)
208 max(NetExp_reg -NetExp)
209
210 save('MRGRASsol '); % Save the MRGRAS results
211 %return
212
213 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
214 %% Step 2a: Calculation of the components of TxS %%%%%%%%%%%%%%%%%%%%%%%%%%
215 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
216 % This is closely linked to the next step as TotGVA is computed here
217
218 load('MRGRASsol ')
219 % Calculation of the value added tax (VAT): it is linked to the private
220 % consumption (Con): VAT = {VATrate /(1+ VATrate)}*Con
221 VATcoef = invdiag(BZ(1:n,n+1))*BTxS (1,:) '; % Benchmark VAT coefficient
222 VAT = zeros(n,1,y);
223 for yr = 1:yr
224 VAT(:,:,yr) = VATcoef .*MRZ(1:n,n+1,yr);
225 end
226 VAT = squeeze(VAT);
227
228 % Make a choice of whether to allocate CO2 taxes to fuel users or not
229 AllocateCO2Tax = 1; % 1 == Yes. If not , add any other number
230 if AllocateCO2Tax == 1
231 % Allocating CO2 taxes on fuel combustion (TaxCO2) from fuel producers
232 % across all fuel -using sectors. These totals are also exogenously included
233 % within the indirect taxes for fuel sectors (02, 04 and 05) in EnergyTab.
234 id_fuel = [0;1;0;1;1; zeros(s-5,1)]; % Coal (2), Oil (4), and Gas (5)
235 id_fuel = kron(ones(r,1),id_fuel);
236 id_allocate = id_fuel*ones(1,n);
237 id_allocate = id_allocate .* DiagSum;
238 id_reduce = [zeros(1,s);
239 ones(1,s);
240 zeros(1,s);
241 ones(2,s);
242 zeros(s-5,s)];
243 id_reduce (2,2) = 0;
244 id_reduce (4,4) = 0;
245 id_reduce (5,5) = 0;
246 id_reduce = kron(eye(r),id_reduce);
247 FuelUseShare = zeros(n,n);
248 TaxCO2allocated = zeros(n,n,y); % TaxCO2 allocated over the fuel users
249 CO2toUseProp = zeros(n,n,y); % TaxCO2 -to-use (net of tax) proportion
250 for yr = 1:y
251 FuelUseShare = MRZ (1:n,1:n,yr).* id_allocate;
252 FuelUseShare = invdiag(sum(FuelUseShare ,2))*FuelUseShare;
253 TaxCO2allocated (:,:,yr) = diag(TaxCO2(:,yr))*FuelUseShare;
254 % Subtract TaxCO2 from the intermediate purchases of non -fuel users
255 MRZ (1:n,1:n,yr) = MRZ (1:n,1:n,yr)-(TaxCO2allocated (:,:,yr).* id_reduce);
256 CO2toUseProp (:,:,yr) = TaxCO2allocated (:,:,yr)./MRZ(1:n,1:n,yr);
257 end
258 TaxCO2allocFin = squeeze(sum(TaxCO2allocated)); % To be included in TxS
259 %
260 for yr = 1:y
261 % Update total Dem (Sup) for fuel sectors: these will be now smaller!
262 Dem(:,yr) = Dem(:,yr) -(TaxCO2(:,yr)-sum(TaxCO2allocated (:,:,yr).*diag(id_fuel)) ');
263 end
264 end
265 %%
266 % Total intermediate demand for all years
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267 IntDem = zeros(n,y);
268 for yr = 1:y
269 IntDem(:,yr) = sum(MRZ(1:n,1:n,yr).* DiagSum) ';
270 end
271 % Subsidies and indirect taxes will be later computed using these formulae:
272 % Subsidies: Sub = SubRate *( IntDem+TotGVA),
273 % Indirect taxes: InTax = InTxRate *( IntDem+TotGVA+Imp -Exp -ExMrg)
274 % We use these to derive their benchark -year rates
275 SubRate = invdiag(IntDem (:,1)+sum(BGVA)')*BTxS (2,:) '; % Benchmark SubRate
276 InTxRate = invdiag(IntDem (:,1)+sum(BGVA) '+Imports (:,1)-Exports (:,1)-ExpMarg (:,1))*BTxS (3,:) '; %

Benchmark InTaxRate
277
278 % Calculating the benchmark 2011 duties rates on imports
279 % Duties = DutiesRate*Imports /(1+ SubRate+GHGrate), where
280 % the rate of GHG tax is endogenous and is obtained from:
281 % TaxGHG = GHGrate *( IntDem+TotGVA)
282 GHGrate = zeros(n,y);
283 GHGrate (:,1) = invdiag(IntDem (:,1)+sum(BGVA)')*TaxGHG (:,1); % Benchmark GHGrate
284 ExpImpQ = zeros(n,n,y); % Trade matrix in volume terms
285 ExpImpQ (:,:,1) = invdiag (1+ SubRate+GHGrate (:,1))*ExpImp (1:n,1:n,1); % Benchmark trade matrix in

volume terms
286 DutiesRate = zeros(n,n); % Benchmark duties rates
287 mr = 1;
288 for rr = 1:r
289 mc = 1;
290 for rc = 1:r
291 DutiesRate(mr:mr+s-1,mc:mc+s-1) = diag(BDuties(mr:mr+s-1,rc))./ ExpImpQ(mr:mr+s-1,mc:mc+s-1,1);
292 mc = mc+s;
293 end
294 mr = mr+s;
295 end
296 DutiesRate(isnan(DutiesRate)==1) = 0;
297
298 % Compute TotGVA
299 DIM = zeros(n,n,y); % DutyRate .* ExpImp
300 for yr = 1:y
301 DIM(:,:,yr) = DutiesRate .* ExpImp (1:n,1:n,yr);
302 end
303 OneSubR = 1+ SubRate;
304 OneInTxR = 1+ InTxRate;
305 OneSubInTxR = 1+ SubRate+InTxRate;
306 Duty = zeros(n,y);
307 TotGVA = zeros(n,y);
308 for yr = 1:y
309 if AllocateCO2Tax == 1
310 F(:,yr) = Dem(:,yr)-(OneSubInTxR .* IntDem(:,yr)+OneInTxR .* Imports(:,yr)...
311 +ImpMarg(:,yr)+VAT(:,yr)+TaxCO2allocFin (:,yr)+TaxGHG(:,yr)...
312 -InTxRate .*( Exports(:,yr)+ExpMarg(:,yr)));
313 else
314 F(:,yr) = Dem(:,yr)-(OneSubInTxR .* IntDem(:,yr)+OneInTxR .* Imports(:,yr)...
315 +ImpMarg(:,yr)+VAT(:,yr)+TaxCO2(:,yr)+TaxGHG(:,yr)...
316 -InTxRate .*( Exports(:,yr)+ExpMarg(:,yr)));
317 end
318
319 % Solving for TotGVA (including computing GHGrate and Duty)
320 TotGVAcomp = 10* ones(n,1); % Arbitrary initial value of TotGVA
321 iter = 1
322 difMax = 1;
323 while difMax >eps ,
324 iter = iter+1
325 GHGrate(:,yr) = invdiag(IntDem(:,yr)+TotGVAcomp)*TaxGHG(:,yr);
326 Duty(:,yr) = sum(invdiag(OneSubR+GHGrate(:,yr))*DIM(:,:,yr)) ';
327 TotGVA0 = TotGVAcomp;
328 TotGVAcomp = invdiag(OneSubInTxR)*(F(:,yr)-Duty(:,yr));
329 difMax = max(abs(TotGVAcomp -TotGVA0));
330 end
331 TotGVA(:,yr) = TotGVAcomp;
332 end
333 % Check if the benchmark TotGVA is replicated: must be (close to) zero!
334 display('Check if the benchmark TotGVA is replicated: must be (close to) zero!')
335 min(TotGVA (:,1)-sum(BGVA)')
336 max(TotGVA (:,1)-sum(BGVA)')
337
338 Duties = zeros(n,n,y); % Projections of the detailed duties data
339 for yr = 1:y
340 ExpImpQ(:,:,yr) = invdiag(OneSubR+GHGrate(:,yr))*ExpImp (1:n,1:n,yr);
341 Duties(:,:,yr) = DutiesRate .* ExpImpQ (1:n,1:n,yr);
342 end
343
344 % Undiagonalize for better -screening purposes (just in case , if needed)
345 DutiesAgg = zeros(n,r,y); % Duties projections by sector and import partners
346 DutiesRateAgg = zeros(n,r); % Duties rate by sector and import partners
347 for yr = 1:y
348 mr = 1;
349 for rr = 1:r
350 mc = 1;
351 for rc = 1:r
352 DutiesAgg(mr:mr+s-1,rc,yr) = diag(Duties(mr:mr+s-1,mc:mc+s-1,yr));
353 if yr == 1
354 DutiesRateAgg(mr:mr+s-1,rc) = diag(DutiesRate(mr:mr+s-1,mc:mc+s-1));
355 end
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356 mc = mc+s;
357 end
358 mr = mr+s;
359 end
360 end
361
362 % Now compute subsidies and indirect taxes
363 Subsidies = zeros(n,y);
364 InTaxes = zeros(n,y);
365 for yr = 1:y
366 Subsidies (:,yr) = diag(SubRate)*( IntDem(:,yr)+TotGVA(:,yr));
367 InTaxes(:,yr) = diag(InTxRate)*( IntDem(:,yr)+TotGVA(:,yr)+Imports(:,yr)-Exports(:,yr)-ExpMarg(:,yr)

);
368 end
369
370 % Add the exogenously specified TxS components of the energy sectors
371 VAT(id_energy*ones(1,y)==1) = 0;
372 Subsidies(id_energy*ones(1,y)==1) = 0;
373 InTaxes(id_energy*ones(1,y)==1) = 0;
374 Duty(id_energy*ones(1,y)==1) = 0;
375 for yr = 1:y
376 VAT(:,yr) = VAT(:,yr)+MRIO_energy(n+1,1:n,yr)';
377 Subsidies (:,yr) = Subsidies (:,yr)+MRIO_energy(n+2,1:n,yr)'-TaxGHG(:,yr).* id_energy;
378 InTaxes(:,yr) = InTaxes(:,yr)+MRIO_energy(n+3,1:n,yr)'-TaxCO2(:,yr);
379 Duty(:,yr) = Duty(:,yr)+MRIO_energy(n+4,1:n,yr) ';
380 end
381 TotGVA(id_energy*ones(1,y)==1) = TotGVA_energy(id_energy*ones(1,y)==1);
382
383 % Check the input -side balance: it must be equal to zero!
384 display('Check the input -side balance: it must be equal (close) to zero!')
385 if AllocateCO2Tax == 1
386 min(Dem -IntDem -Imports -ImpMarg -VAT -Subsidies -InTaxes -Duty -TaxCO2allocFin -TaxGHG -TotGVA)
387 max(Dem -IntDem -Imports -ImpMarg -VAT -Subsidies -InTaxes -Duty -TaxCO2allocFin -TaxGHG -TotGVA)
388 else
389 min(Dem -IntDem -Imports -ImpMarg -VAT -Subsidies -InTaxes -Duty -TaxCO2 -TaxGHG -TotGVA)
390 max(Dem -IntDem -Imports -ImpMarg -VAT -Subsidies -InTaxes -Duty -TaxCO2 -TaxGHG -TotGVA)
391 end
392
393 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
394 %% Step 2b: Estimating the components of GVA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
395 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
396
397 % GVA components: capital , high - and low -skilled labour , and oil reserves
398 GVA = zeros(n,f,y);
399 TotGVAexcCap = zeros(n,y); % GVA excluding capital compensation
400 TotGVAexcCapShare = zeros(n,y);
401 for yr = 1:y
402 TotGVAexcCap (:,yr) = TotGVA(:,yr)-Cap(:,yr);
403 TotGVAexcCapShare (:,yr) = TotGVAexcCap (:,yr)./ TotGVA(:,yr);
404
405 GVA(:,1,yr) = Cap(:,yr);
406 GVA(:,2:f,yr) = diag(TotGVAexcCap (:,yr))*LR_Shares (:,:,yr);
407 end
408
409 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
410 %% Saving the results and exporting to excel files %%%%%%%%%%%%%%%%%%%%%%%
411 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
412
413 RangeMRIO = 'D4:AFL851 ';
414 OutputMRIO = [Folder ,'Baseline projections_MRIOs.xlsx'];
415 % Export the MRIOs
416 MRIO = zeros(n+f+7,n+4,y); % MRIO tables for all years
417 for yr = 1:y
418 MRIO(:,:,yr) = [MRZ(1:n,1:end -1,yr),Invest(:,yr),MRZ(1:n,end ,yr);
419 VAT(:,yr)', zeros (1,4);
420 Subsidies (:,yr)', zeros (1,4);
421 InTaxes(:,yr)', zeros (1,4);
422 Duty(:,yr)', zeros (1,4);
423 TaxCO2allocFin (:,yr)', zeros (1,4); %TaxCO2(:,yr)', zeros (1,4);
424 TaxGHG(:,yr)', zeros (1,4);
425 GVA(:,:,yr)', zeros (4,4);
426 MRZ(end ,1:end -1,yr) ,0,0];
427 [status ,message] = xlswrite(OutputMRIO ,MRIO(:,:,yr),Year{yr},RangeMRIO)
428 end
429 save('Results_MRIOs ','MRIO','ExpImp ','DutiesAgg ','Dem','Invest ','Cap','TotGVA_TxS ')
430
431 % Export the national IO tables (NIOTs) for each region separately
432 OutputNIOTs = [Folder ,'Baseline projections_NIOTs.xlsx'];
433 Results_NIOTs = zeros (45*y,39,r);
434 RangeNIOT = 'A3:AM407';
435 RangeTrd = 'AQ3:CU407';
436 m = 1;
437 for rr = 1:r
438 ResNIOTs = []; % NIOTs
439 TrdNIOTs = []; % Exports and imports data by trade partners
440 for yr = 1:y
441 X = [MRIO(m:m+s-1,m:m+s-1,yr),MRIO(m:m+s-1,n+1:n+4,yr),sum(ExpImp(m:m+s-1,1:n,yr) ,2);
442 MRIO(n+1:end ,m:m+s-1,yr),zeros (11,5);
443 sum(ExpImp (1:n,m:m+s-1,yr)),zeros (1,5)];
444 X = [X;sum(X)];
445 ResNIOTs = [ResNIOTs ;[ str2num(Year{yr})*ones(size(X,1) ,1) ,[1:44] '* nan(1,2),X];nan (1 ,39)];
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446 %
447 Exp = [];
448 Imp = [];
449 k = 1;
450 for rrr = 1:r
451 Exp = [Exp ,diag(ExpImp(m:m+s-1,k:k+s-1,yr))];
452 Imp = [Imp ,diag(ExpImp(k:k+s-1,m:m+s-1,yr))];
453 k = k+s;
454 end
455 TrdNIOTs = [TrdNIOTs ;[[1:s]',Exp ,nan(s,1) ,[1:s]',Imp];nan (14 ,57)];
456 end
457 m = m+s;
458 Results_NIOTs (:,:,rr) = ResNIOTs;
459 % Export to excel: National IO-type results
460 [status ,message] = xlswrite(OutputNIOTs ,ResNIOTs ,Reg{rr},RangeNIOT)
461 [status ,message] = xlswrite(OutputNIOTs ,TrdNIOTs ,Reg{rr},RangeTrd)
462 end
463 save('Results_NIOTs ','Results_NIOTs ')
464
465 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
466 %% Evaluation of the results: MAPE and WAPE indicators %%%%%%%%%%%%%%%%%%%
467 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
468 load('Results_MRIOs.mat')
469 % The differences imposed exogenously on the system
470 mape_Dem = zeros(y-1,1);
471 mape_Inv = zeros(y-1,1);
472 mape_TotGVA_TxS = zeros(y-1,1);
473 mape_Cap = zeros(y-1,1);
474 %
475 wape_Dem = zeros(y-1,1);
476 wape_Inv = zeros(y-1,1);
477 wape_TotGVA_TxS = zeros(y-1,1);
478 wape_Cap = zeros(y-1,1);
479 % Differences relative to the benchmark year of 2011
480 % SmallToBeNeglected = 1.e-5;
481 % Dem(Dem <SmallToBeNeglected) = 0;
482 % TotGVA_TxS(TotGVA_TxS <SmallToBeNeglected) = 0;
483 % Cap(Cap <SmallToBeNeglected) = 0;
484 for yr = 2:y
485 wape_Dem(yr -1) = wape(Dem(:,1),Dem(:,yr));
486 wape_Inv(yr -1) = wape(Invest (:,1),Invest(:,yr));
487 wape_TotGVA_TxS(yr -1) = wape(TotGVA_TxS (:,1),TotGVA_TxS (:,yr));
488 wape_Cap(yr -1) = wape(Cap(:,1),Cap(:,yr));
489 %
490 mape_Dem(yr -1) = mape(Dem(:,1),Dem(:,yr));
491 mape_Inv(yr -1) = mape(Invest (:,1),Invest(:,yr));
492 mape_TotGVA_TxS(yr -1) = mape(TotGVA_TxS (:,1),TotGVA_TxS (:,yr));
493 mape_Cap(yr -1) = mape(Cap(:,1),Cap(:,yr));
494 end
495
496 MAPEs = [mape_Dem ,mape_Inv ,mape_TotGVA_TxS ,mape_Cap]
497 WAPEs = [wape_Dem ,wape_Inv ,wape_TotGVA_TxS ,wape_Cap]
498 (MAPEs./WAPEs -1) *100
499
500 t = [2015;2020;2025;2030;2035;2040;2045;2050];
501 c1 = 'r'; c2 = 'g'; c3 = 'b'; c4 = 'm'; c5 = 'c';
502 subplot (2,2,1)
503 pl = plot(t,mape_Dem ,t,mape_Inv ,t,mape_TotGVA_TxS ,t,mape_Cap)
504 set(pl(1),'Color',c1,'Marker ','^','MarkerFaceColor ',c1 ,'MarkerEdgeColor ','k')
505 set(pl(2),'Color',c2,'Marker ','o','MarkerFaceColor ',c2 ,'MarkerEdgeColor ','k')
506 set(pl(3),'Color',c3,'Marker ','>','MarkerFaceColor ',c3)
507 set(pl(4),'Color',c4,'Marker ','s','MarkerFaceColor ',c4 ,'MarkerEdgeColor ','k')
508 legend('MAPE_{Demand}','MAPE_{Investment}','MAPE_{TotalGVA&TxS}','MAPE_{Capital}')
509 title('MAPE with respect to 2011')
510 xlabel('Year');
511 %set(gca ,'ylim ' ,[0 ,180]);
512 set(gca ,'xlim' ,[2015 ,2050]);
513 set(gca , 'XTick', t)
514 grid on
515 %
516 subplot (2,2,2)
517 pl = plot(t,wape_Dem ,t,wape_Inv ,t,wape_TotGVA_TxS ,t,wape_Cap)
518 set(pl(1),'Color',c1,'Marker ','^','MarkerFaceColor ',c1 ,'MarkerEdgeColor ','k')
519 set(pl(2),'Color',c2,'Marker ','o','MarkerFaceColor ',c2 ,'MarkerEdgeColor ','k')
520 set(pl(3),'Color',c3,'Marker ','>','MarkerFaceColor ',c3)
521 set(pl(4),'Color',c4,'Marker ','s','MarkerFaceColor ',c4 ,'MarkerEdgeColor ','k')
522 legend('WAPE_{Demand}','WAPE_{Investment}','WAPE_{TotalGVA&TxS}','WAPE_{Capital}')
523 title('WAPE with respect to 2011')
524 xlabel('Year');
525 %set(gca ,'ylim ' ,[0 ,180]);
526 set(gca ,'xlim' ,[2015 ,2050]);
527 set(gca , 'XTick', t)
528 grid on
529 % Differences relative to the previous year
530 for yr = 2:y
531 wape_Dem(yr -1) = wape(Dem(:,yr -1),Dem(:,yr));
532 wape_Inv(yr -1) = wape(Invest(:,yr -1),Invest(:,yr));
533 wape_TotGVA_TxS(yr -1) = wape(TotGVA_TxS (:,yr -1),TotGVA_TxS (:,yr));
534 wape_Cap(yr -1) = wape(Cap(:,yr -1),Cap(:,yr));
535
536 mape_Dem(yr -1) = mape(Dem(:,yr -1),Dem(:,yr));
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537 mape_Inv(yr -1) = mape(Invest(:,yr -1),Invest(:,yr));
538 mape_TotGVA_TxS(yr -1) = mape(TotGVA_TxS (:,yr -1),TotGVA_TxS (:,yr));
539 mape_Cap(yr -1) = mape(Cap(:,yr -1),Cap(:,yr));
540 end
541 %
542 subplot (2,2,3)
543 pl = plot(t,mape_Dem ,t,mape_Inv ,t,mape_TotGVA_TxS ,t,mape_Cap)
544 set(pl(1),'Color',c1,'Marker ','^','MarkerFaceColor ',c1 ,'MarkerEdgeColor ','k')
545 set(pl(2),'Color',c2,'Marker ','o','MarkerFaceColor ',c2 ,'MarkerEdgeColor ','k')
546 set(pl(3),'Color',c3,'Marker ','>','MarkerFaceColor ',c3)
547 set(pl(4),'Color',c4,'Marker ','s','MarkerFaceColor ',c4 ,'MarkerEdgeColor ','k')
548 legend('MAPE_{Demand}','MAPE_{Investment}','MAPE_{TotalGVA&TxS}','MAPE_{Capital}')
549 title('MAPE with respect to the previous year')
550 xlabel('Year');
551 set(gca ,'xlim' ,[2015 ,2050]);
552 set(gca , 'XTick', t)
553 grid on
554 %
555 subplot (2,2,4)
556 pl = plot(t,wape_Dem ,t,wape_Inv ,t,wape_TotGVA_TxS ,t,wape_Cap)
557 set(pl(1),'Color',c1,'Marker ','^','MarkerFaceColor ',c1 ,'MarkerEdgeColor ','k')
558 set(pl(2),'Color',c2,'Marker ','o','MarkerFaceColor ',c2 ,'MarkerEdgeColor ','k')
559 set(pl(3),'Color',c3,'Marker ','>','MarkerFaceColor ',c3)
560 set(pl(4),'Color',c4,'Marker ','s','MarkerFaceColor ',c4 ,'MarkerEdgeColor ','k')
561 legend('WAPE_{Demand}','WAPE_{Investment}','WAPE_{TotalGVA&TxS}','WAPE_{Capital}')
562 title('WAPE with respect to the previous year')
563 xlabel('Year');
564 set(gca ,'ylim' ,[0,20]);
565 set(gca ,'xlim' ,[2015 ,2050]);
566 set(gca , 'XTick', t)
567 grid on
568
569 %% Distance measures of the projections
570 mape_MRIO = zeros(y-1,1); %The entire MRIO
571 mape_Con = zeros(y-1,1); %Private consumption
572 mape_Gov = zeros(y-1,1); %Goverment consumption
573 mape_IntD = zeros(y-1,1); %Intermediate demand matrix
574 mape_TxS = zeros(y-1,1); %Taxes and subsidies
575 mape_LabRes = zeros(y-1,1); %Labor and oil reserves
576 mape_Trd = zeros(y-1,1); %Trade (exports and imports , including margins)
577
578 wape_MRIO = zeros(y-1,1);
579 wape_Con = zeros(y-1,1);
580 wape_Gov = zeros(y-1,1);
581 wape_IntD = zeros(y-1,1)
582 wape_TxS = zeros(y-1,1);
583 wape_LabRes = zeros(y-1,1);
584 wape_Trd = zeros(y-1,1);
585
586 DiagOne = kron(eye(r),ones(s,s));
587 IntDemM = zeros(n,n,y); %Intermediate demand matrix for all years
588 for yr = 1:y
589 IntDemM(:,:,yr) = MRIO (1:n,1:n,yr).* DiagOne;
590 end
591 for yr = 2:y
592 mape_MRIO(yr -1) = mape(MRIO(:,:,yr -1),MRIO(:,:,yr));
593 mape_Con(yr -1) = mape(MRIO (1:n,n+1,yr -1),MRIO (1:n,n+1,yr));
594 mape_Gov(yr -1) = mape(MRIO (1:n,n+2,yr -1),MRIO (1:n,n+2,yr));
595 mape_IntD(yr -1) = mape(IntDemM(:,:,yr -1),IntDemM (:,:,yr));
596 mape_TxS(yr -1) = mape(MRIO(n+1:n+4,1:n,yr -1),MRIO(n+1:n+4,1:n,yr));
597 mape_LabRes(yr -1) = mape(MRIO(n+7:n+9,1:n,yr -1),MRIO(n+7:n+9,1:n,yr));
598 mape_Trd(yr -1) = mape(ExpImp(:,:,yr -1),ExpImp(:,:,yr));
599
600 wape_MRIO(yr -1) = wape(MRIO(:,:,yr -1),MRIO(:,:,yr));
601 wape_Con(yr -1) = wape(MRIO (1:n,n+1,yr -1),MRIO (1:n,n+1,yr));
602 wape_Gov(yr -1) = wape(MRIO (1:n,n+2,yr -1),MRIO (1:n,n+2,yr));
603 wape_IntD(yr -1) = wape(IntDemM(:,:,yr -1),IntDemM (:,:,yr));
604 wape_TxS(yr -1) = wape(MRIO(n+1:n+4,1:n,yr -1),MRIO(n+1:n+4,1:n,yr));
605 wape_LabRes(yr -1) = wape(MRIO(n+7:n+9,1:n,yr -1),MRIO(n+7:n+9,1:n,yr));
606 wape_Trd(yr -1) = wape(ExpImp(:,:,yr -1),ExpImp(:,:,yr));
607 end
608 % Distances relative to those of TotDem/TotSup
609 mape_MRIOr = mape_MRIO ./ mape_Dem;
610 mape_Conr = mape_Con ./ mape_Dem;
611 mape_Govr = mape_Gov ./ mape_Dem;
612 mape_IntDr = mape_IntD ./ mape_Dem;
613 mape_TxSr = mape_TxS ./ mape_Dem;
614 mape_LabResr = mape_LabRes ./ mape_Dem;
615 mape_Trdr = mape_Trd ./ mape_Dem;
616
617 wape_MRIOr = wape_MRIO ./ wape_Dem;
618 wape_Conr = wape_Con ./ wape_Dem;
619 wape_Govr = wape_Gov ./ wape_Dem;
620 wape_IntDr = wape_IntD ./ wape_Dem;
621 wape_TxSr = wape_TxS ./ wape_Dem;
622 wape_LabResr = wape_LabRes ./ wape_Dem;
623 wape_Trdr = wape_Trd ./ wape_Dem;
624
625 c1='b'; c2='g'; c3='r'; c4='c'; c5='m'; c6='y'; c7='k';
626 figure
627 subplot (1,2,1)
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628 pl = plot(t,mape_MRIOr ,t,mape_Conr ,t,mape_Govr ,t,mape_IntDr ,t,mape_TxSr ,t,mape_LabResr ,t,mape_Trdr)
629 set(pl(1),'Color',c1,'Marker ','^','MarkerFaceColor ',c1 ,'MarkerEdgeColor ','k')
630 set(pl(2),'Color',c2,'Marker ','o','MarkerFaceColor ',c2 ,'MarkerEdgeColor ','k')
631 set(pl(3),'Color',c3,'Marker ','>','MarkerFaceColor ',c3 ,'MarkerEdgeColor ','k')
632 set(pl(4),'Color',c4,'Marker ','s','MarkerFaceColor ',c4 ,'MarkerEdgeColor ','k')
633 set(pl(5),'Color',c5,'Marker ','+','MarkerFaceColor ',c5 ,'MarkerEdgeColor ','k')
634 set(pl(6),'Color',c6,'Marker ','p','MarkerFaceColor ',c6 ,'MarkerEdgeColor ','k')
635 set(pl(7),'Color',c7,'Marker ','h','MarkerFaceColor ',c7 ,'MarkerEdgeColor ','k')
636 legend('MRIO','PrivCon ','GovCon ','IntDem ','TxS','LabRes ','Trade')
637 title('MAPEs relative to MAPE_{Dem}')
638 xlabel('Year');
639 set(gca ,'ylim' ,[0,32]);
640 set(gca ,'xlim' ,[2015 ,2050]);
641 set(gca , 'XTick', t)
642 grid on
643 %
644 subplot (1,2,2)
645 pl = plot(t,wape_MRIOr ,t,wape_Conr ,t,wape_Govr ,t,wape_IntDr ,t,wape_TxSr ,t,wape_LabResr ,t,wape_Trdr)
646 set(pl(1),'Color',c1,'Marker ','^','MarkerFaceColor ',c1 ,'MarkerEdgeColor ','k')
647 set(pl(2),'Color',c2,'Marker ','o','MarkerFaceColor ',c2 ,'MarkerEdgeColor ','k')
648 set(pl(3),'Color',c3,'Marker ','>','MarkerFaceColor ',c3 ,'MarkerEdgeColor ','k')
649 set(pl(4),'Color',c4,'Marker ','s','MarkerFaceColor ',c4 ,'MarkerEdgeColor ','k')
650 set(pl(5),'Color',c5,'Marker ','+','MarkerFaceColor ',c5 ,'MarkerEdgeColor ','k')
651 set(pl(6),'Color',c6,'Marker ','p','MarkerFaceColor ',c6 ,'MarkerEdgeColor ','k')
652 set(pl(7),'Color',c7,'Marker ','h','MarkerFaceColor ',c7 ,'MarkerEdgeColor ','k')
653 legend('MRIO','PrivCon ','GovCon ','IntDem ','TxS','LabRes ','Trade')
654 title('WAPEs relative to WAPE_{Dem}')
655 xlabel('Year');
656 set(gca ,'ylim' ,[0,2]);
657 set(gca ,'xlim' ,[2015 ,2050]);
658 set(gca , 'XTick', t)
659 grid on
660
661 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
662 %%%%%%%%%%%% END OF THE PROGRAM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
663 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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